422 research outputs found

    Reliability considerations in the design, assembly, and testing of the mariner iv power system

    Get PDF
    Reliability considerations in design, assembly, and testing of Mariner IV power syste

    Emerging evidence for CHFR as a cancer biomarker : from tumor biology to precision medicine

    Get PDF
    Novel insights in the biology of cancer have switched the paradigm of a "one-size-fits-all" cancer treatment to an individualized biology-driven treatment approach. In recent years, a diversity of biomarkers and targeted therapies has been discovered. Although these examples accentuate the promise of personalized cancer treatment, for most cancers and cancer subgroups no biomarkers and effective targeted therapy are available. The great majority of patients still receive unselected standard therapies with no use of their individual molecular characteristics. Better knowledge about the underlying tumor biology will lead the way toward personalized cancer treatment. In this review, we summarize the evidence for a promising cancer biomarker: checkpoint with forkhead and ring finger domains (CHFR). CHFR is a mitotic checkpoint and tumor suppressor gene, which is inactivated in a diverse group of solid malignancies, mostly by promoter CpG island methylation. CHFR inactivation has shown to be an indicator of poor prognosis and sensitivity to taxane-based chemotherapy. Here we summarize the current knowledge of altered CHFR expression in cancer, the impact on tumor biology and implications for personalized cancer treatment

    Charged bottomonium-like structures Zb(10610)Z_b(10610) and Zb(10650)Z_b(10650)

    Full text link
    The observation of two charged bottomonium-like structures Zb(10610)Z_b(10610) and Zb(10650)Z_b(10650) has stimulated extensive studies of the properties of Zb(10610)Z_b(10610) and Zb(10650)Z_b(10650). In this talk, we briefly introduce the research status of Zb(10610)Z_b(10610) and Zb(10650)Z_b(10650) combined with our theoretical progress.Comment: 6 pages, 1 table, 5 figures. Plenary talk given at the international conference The Fifth Asia-Pacific Conference on Few-Body Systems in Physics 2011 (APFB2011), Seoul, Republic of Korea, 22-26 August 201

    Testiculaire aandoening van seksuele differentiatie (78,XX SRY-negatief) bij een vrouwelijke Franse buldog

    Get PDF
    A presumably female intact French bulldog of ten months old was presented to the Faculty of Veterinary Medicine of the Ghent University with an enlarged clitoris and purulent vaginal discharge. It was suggested to remove the enlarged clitoris as to avoid further irritation and to perform a gonadectomy at the same time, since the owners were not planning to breed with the dog. An abnormal reproductive tract was observed during surgery. A normal uterus was present, but both gonads resembled testes. Histologic examination of the resected tissues confirmed the presence of bilateral testes in combination with a normal uterus. Karyotyping and molecular analysis of the SRY-gene resulted in a 78,XX SRY-negative karyotype. The French bulldog was diagnosed with a 78,XX SRY-negative testicular disorder of sex development (DSD)

    Charm diffusion in a pion gas implementing unitarity, chiral and heavy quark symmetries

    Get PDF
    We compute the charm drag and diffusion coefficients in a hot pion gas, such as is formed in a Heavy Ion Collision after the system cools sufficiently to transit into the hadron phase. We fully exploit Heavy Quark Effective Theory (with both D and D* mesons as elementary degrees of freedom during the collision) and Chiral Perturbation Theory, and employ standard unitarization to reach higher temperatures. We find that a certain friction and shear diffusion coefficients are almost p-independent at fixed temperature which simplifies phenomenological analysis. At the higher end of reliability of our calculation, T about 150 MeV, we report a charm relaxation length of some 40 fm, in agreement with the model estimate of He, Fries and Rapp. The momentum of a 1-GeV charm quark decreases about 50 MeV per Fermi when crossing the hadron phase.Comment: 23 pages, 29 figure

    Malignant Transformation of Giant Cell Tumor of Bone and the Association with Denosumab Treatment:A Radiology and Pathology Perspective

    Get PDF
    Objective. Malignancy in giant cell tumor of bone (mGCTB) is categorized as primary (concomitantly with conventional GCTB) or secondary (after radiotherapy or other treatment). Denosumab therapy has been suggested to play a role in the etiology of secondary mGCTB. In this case series from a tertiary referral sarcoma center, we aimed to find distinctive features for malignant transformation in GCTB on different imaging modalities. Furthermore, we assessed the duration of denosumab treatment and lag time to the development of malignancy. Methods. From a histopathology database search, 6 patients were pathologically confirmed as having initial conventional GCTB and subsequently with secondary mGCTB. Results. At the time of mGCTB diagnosis, 2 cases were treated with denosumab only, 2 with denosumab and surgery, 1 with multiple curettages and radiotherapy, and 1 with surgery only. In the 4 denosumab treated patients, the mean lag time to malignant transformation was 7 months (range 2-11 months). Imaging findings suspicious of malignant transformation related to denosumab therapy are the absence of fibro-osseous matrix formation and absent neocortex formation on CT, and stable or even increased size of the soft tissue component. Conclusion. In 4 patients treated with denosumab, secondary mGCTB occurred within the first year after initiation of treatment. Radiotherapy-associated mGCTB has a longer lag time than denosumab-associated mGCTB. Close clinical and imaging follow-up during the first months of denosumab therapy is key, as mGCTB tends to have rapid aggressive behavior, similar to other high-grade sarcomas. Nonresponders should be (re) evaluated for their primary diagnosis of conventional GCTB

    Multiparametric determination of genes and their point mutations for identification of beta-lactamases

    Get PDF

    Application of COMPOCHIP Microarray to Investigate the Bacterial Communities of Different Composts

    Get PDF
    A microarray spotted with 369 different 16S rRNA gene probes specific to microorganisms involved in the degradation process of organic waste during composting was developed. The microarray was tested with pure cultures, and of the 30,258 individual probe-target hybridization reactions performed, there were only 188 false positive (0.62%) and 22 false negative signals (0.07%). Labeled target DNA was prepared by polymerase chain reaction amplification of 16S rRNA genes using a Cy5-labeled universal bacterial forward primer and a universal reverse primer. The COMPOCHIP microarray was applied to three different compost types (green compost, manure mix compost, and anaerobic digestate compost) of different maturity (2, 8, and 16 weeks), and differences in the microorganisms in the three compost types and maturity stages were observed. Multivariate analysis showed that the bacterial composition of the three composts was different at the beginning of the composting process and became more similar upon maturation. Certain probes (targeting Sphingobacterium, Actinomyces, Xylella/Xanthomonas/ Stenotrophomonas, Microbacterium, Verrucomicrobia, Planctomycetes, Low G + C and Alphaproteobacteria) were more influential in discriminating between different composts. Results from denaturing gradient gel electrophoresis supported those of microarray analysis. This study showed that the COMPOCHIP array is a suitable tool to study bacterial communities in composts

    Light meson mass dependence of the positive parity heavy-strange mesons

    Get PDF
    We calculate the masses of the resonances D_{s0}^*(2317) and D_{s1}(2460) as well as their bottom partners as bound states of a kaon and a D^*- and B^*-meson, respectively, in unitarized chiral perturbation theory at next-to-leading order. After fixing the parameters in the D_{s0}^*(2317) channel, the calculated mass for the D_{s1}(2460) is found in excellent agreement with experiment. The masses for the analogous states with a bottom quark are predicted to be M_{B^*_{s0}}=(5696\pm 40) MeV and M_{B_{s1}}=(5742\pm 40) MeV in reasonable agreement with previous analyses. In particular, we predict M_{B_{s1}}-M_{B_{s0}^*}=46\pm 1 MeV. We also explore the dependence of the states on the pion and kaon masses. We argue that the kaon mass dependence of a kaonic bound state should be almost linear with slope about unity. Such a dependence is specific to the assumed molecular nature of the states. We suggest to extract the kaon mass dependence of these states from lattice QCD calculations.Comment: 10 page
    • …
    corecore