16 research outputs found

    Ectopic Expression of E2F1 Stimulates β-Cell Proliferation and Function

    Get PDF
    OBJECTIVE-Generating functional beta-cells by inducing their proliferation may provide new perspectives for cell therapy in diabetes. Transcription factor E2F1 controls G(1)- to S-phase transition during the cycling of many cell types and is required for pancreatic beta-cell growth and function. However, the consequences of overexpression of E2F1 in beta-cells are unknown. RESEARCH DESIGN AND METHODS-The effects of E2F1 overexpression on beta-cell proliferation and function were analyzed in isolated rat beta-cells and in transgenic mice. RESULTS-Adenovirus AdE2F1-mediated overexpression of E2F1 increased the proliferation of isolated primary rat beta-cells 20-fold but also enhanced beta-cell death. Coinfection with adenovirus Ad Akt expressing a constitutively active form of Akt (protein kinase B) suppressed beta-cell death to control levels. At 48 h after infection, the total beta-cell number and insulin content were, respectively, 46 and 79% higher in AdE2F1+AdAkt-infected cultures compared with untreated. Conditional overexpression of E2F1 in mice resulted in a twofold increase of beta-cell proliferation and a 70% increase of pancreatic insulin content, but did not increase beta-cell mass. Glucose-challenged insulin release was increased, and the mice showed protection against toxin-induced diabetes. CONCLUSIONS-Overexpression of E2F1, either in vitro or in vivo, can stimulate beta-cell proliferation activity. In vivo E2F1 expression significantly increases the insulin content and function of adult beta-cells, making it a strategic target for therapeutic manipulation of beta-cell function. Diabetes 59:1435-1444, 201

    Sustained function of alginate-encapsulated human islet cell implants in the peritoneal cavity of mice leading to a pilot study in a type 1 diabetic patient

    No full text
    Aims/hypothesis: Alginate-encapsulated human islet cell grafts have not been able to correct diabetes in humans, whereas free grafts have. This study examined in immunodeficient mice whether alginate-encapsulated graft function was inferior to that of free grafts of the same size and composition. Methods: Cultured human islet cells were equally distributed over free and alginate-encapsulated grafts before implantation in, respectively, the kidney capsule and the peritoneal cavity of non-obese diabetic mice with severe combined immunodeficiency and alloxan-induced diabetes. Implants were followed for in vivo function and retrieved for analysis of cellular composition (all) and insulin secretory responsiveness (capsules). Results: Free implants with low beta cell purity (19 ± 1%) were non-functional and underwent 90% beta cell loss. At medium purity (50 ± 1%), they were functional at post-transplant week 1, evolving to normoglycaemia (4/8) or to C-peptide negativity (4/8) depending on the degree of beta cell-specific losses. Encapsulated implants immediately and sustainably corrected diabetes, irrespective of beta cell purity (16/16). Most capsules were retrievable as single units, enriched in endocrine cells that exhibited rapid secretory responses to glucose and glucagon. Single capsules with similar properties were also retrieved from a type 1 diabetic recipient at post-transplant month 3. However, the vast majority were clustered and contained debris, explaining the poor rise in plasma C-peptide. Conclusions/interpretation: In immunodeficient mice, i.p. implanted alginate-encapsulated human islet cells exhibited a better outcome than free implants under the kidney capsule. They did not show primary non-function at low beta cell purity and avoided beta cell-specific losses by rapidly establishing normoglycaemia. Retrieved capsules presented secretory responses to glucose, which was also observed in a type 1 diabetic recipient. Trial registration: ClinicalTrials.gov NCT01379729 Funding: This study was supported by grants from the JDRF (centre grant 4-2005-1327), the Research Foundation Flanders (G.0801.10), the 6th and 7th Framework Program of the European Commission (numbers 512145 and 241883), and the Agency for Innovation by Science and Technology in Flanders (IWT-TBM7 090884). © 2013 Springer-Verlag Berlin Heidelberg.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Molecular test algorithms for breast tumours

    No full text
    In order to advise the Federal Government on all matters related to personalised medicine in oncology, including the reimbursement of molecular tests, the Commission of Personalized Medicine (ComPerMed) has applied, for the breast tumours, the same methodology as previously applied for the digestive tumours. Meaning, the different molecular tests, represented in the shape of algorithms, are annotated with test levels — which aim to reflect their relevance based on current available data and to define the reimbursement — and are documented with recent literature, guidelines and a brief technical&nbsp;description.</p

    Molecular test algorithms for breast tumours

    No full text
    In order to advise the Federal Government on all matters related to personalised medicine in oncology, including the reimbursement of molecular tests, the Commission of Personalized Medicine (ComPerMed) has applied, for the breast tumours, the same methodology as previously applied for the digestive tumours. Meaning, the different molecular tests, represented in the shape of algorithms, are annotated with test levels — which aim to reflect their relevance based on current available data and to define the reimbursement — and are documented with recent literature, guidelines and a brief technical&nbsp;description.</p
    corecore