618 research outputs found

    Quaternary Sanukitoid-like Andesites Generated by Intracrustal Processes (Chacana Caldera Complex, Ecuador): Implications for Archean Sanukitoids

    Get PDF
    High-Mg diorites enriched in incompatible elements and their extrusive equivalents are rare subduction-related rock types that have been found in modern arc settings and in Late Archean sequences, where they are associated with trondhjemite–tonalite–granodiorite (TTG) suites. Archean rocks with these geochemical features are known as sanukitoids and, despite their limited abundance, are considered to be the indicators of the onset of modern plate tectonics because of their similarities to modern subduction-related high-Mg andesites and diorites. Understanding the genesis of sanukitoid rocks is thus an essential step towards understanding crustal growth processes. The accepted petrogenetic models for modern, enriched, high-Mg andesites and their Archean equivalents, the sanukitoids, consist of metasomatic enrichment of the mantle wedge by slab components and its subsequent partial melting, or the modification of siliceous slab components through continuous reaction with mantle peridotite during their ascent through the mantle wedge. We present new data on the petrography, mineral chemistry and whole-rock geochemistry (major and trace elements and Sr–Nd–Pb isotopes) of andesitic rocks from an ∌30 ka lava flow (Yuyos flow) from the Chacana Caldera Complex, Eastern Cordillera of Ecuador. These rocks show a remarkable geochemical affinity with Archean sanukitoids, including high magnesium numbers (0·58–0·63) accompanied by high contents of incompatible elements (e.g. Th 17–23 ppm, U 6–7·5 ppm, Ba 1600–1800 ppm, Sr 1430–1565 ppm, La 74–94 ppm). Additionally, the sanukitoid-like andesites of Yuyos are associated with predominant silica-rich (adakite-like) andesites, which are widespread throughout the Quaternary arc of Ecuador. This makes the Quaternary Ecuadorian magmatic province a close equivalent of the Archean TTG–sanukitoid association. The bulk-rock geochemistry, petrography and mineral chemistry data indicate that the sanukitoid-like features of the andesites of the Yuyos flow derive from intracrustal recycling of the felsic–intermediate to mafic–ultramafic roots of the Quaternary volcanic arc of Ecuador by ‘normal’ mantle-derived basaltic magmas with the geochemical characteristics of continental arc basalts or high-alumina basalts. In view of the similarities between the Yuyos andesites and Archean sanukitoids in terms of geochemistry and lithological association, we suggest that genetic models should consider the possibility of intracrustal recycling as a process responsible for the peculiar signatures of both Archean sanukitoids and modern enriched high-Mg andesites

    Crustal architecture studies in the Iranian Cadomian arc: insights into source, timing and metallogeny

    Get PDF
    The Jalal Abad magmatic rocks, situated at the southern edge of the Saghand-Bafgh-Zarand district, include a thick pile of Cadomian extrusive and pyroclastic units intruded by younger granitoid stocks. New zircon U–Pb ages show eruptions at ∌552 Ma, followed by emplacement of granodiorite at ∌537 Ma. The Jalal Abad magmatic rocks have typical high-K and shoshonitic signatures, and are characterized by enrichment in large-ion lithophile elements (LILEs) and depletion in high-field-strength elements (HFSE). Zircon ɛHf(t) from the Jalal Abad magmatic rocks ranges from +3.9 to −3.9 for volcanic rocks and −1.2 to +8.1 for granodiorite. Zircon ÎŽ18O values for the Jalal Abad are variable from +5.1 to +8.8‰, progressively higher than those of mantle-derived melts. The whole-rock ɛNd(t) values range between −7.7 to −7.4 for granodiorite, −4.6 to −3 for volcanic rocks and −6.2 to −8.2 for ignimbrites/tuff. The whole-rock Nd and zircon Hf crustal model ages (TDMC) for the Jalal Abad magmatic rocks range between 0.8 and 2.3 Ga. All of the Jalal Abad magmatic rocks have quite similar trace element patterns, and slightly different whole-rock Nd and zircon Hf isotopic composition, indicating the involvement of the thick continental crust during the formation of these rocks. Modeling of zircon Hf–O data, bulk-rock trace elements, and Sr–Nd isotopes suggest the magmas were generated by interaction of mantle–derived melts with thick continental crust through assimilation/fractional crystallization (AFC) processes. However, crustal architecture studies in the Iranian Cadomian arcs show that AFC processes were more important during the Mesoarchean–Early Neoproterozoic (3000–1000 Ma), whereas juvenile magmas became increasingly important to the Cadomian (600–500 Ma) magmatism. Early Cambrian intrusive magmas seemingly intruded sedimentary sequences in the study region and provided magmatic constituents and a heat source for hydrothermal processes and mineralization

    A soft, synergy-based robotic glove for grasping assistance

    Get PDF
    This paper presents a soft, tendon-driven, robotic glove designed to augment grasp capability and provide rehabilitation assistance for postspinal cord injury patients. The basis of the design is an underactuation approach utilizing postural synergies of the hand to support a large variety of grasps with a single actuator. The glove is lightweight, easy to don, and generates sufficient hand closing force to assist with activities of daily living. Device efficiency was examined through a characterization of the power transmission elements, and output force production was observed to be linear in both cylindrical and pinch grasp configurations. We further show that, as a result of the synergy-inspired actuation strategy, the glove only slightly alters the distribution of forces across the fingers, compared to a natural, unassisted grasping pattern. Finally, a preliminary case study was conducted using a participant suffering from an incomplete spinal cord injury (C7). It was found that through the use of the glove, the participant was able to achieve a 50% performance improvement (from four to six blocks) in a standard Box and Block test

    Design and Control of the Rehab-Exos, a Joint Torque-Controlled Upper Limb Exoskeleton †

    Get PDF
    This work presents the design of the Rehab-Exos, a novel upper limb exoskeleton designed for rehabilitation purposes. It is equipped with high-reduction-ratio actuators and compact elastic joints to obtain torque sensors based on strain gauges. In this study, we address the torque sensor performances and the design aspects that could cause unwanted non-axial moment load crosstalk. Moreover, a new full-state feedback torque controller is designed by modeling the multi-DOF, non-linear system dynamics and providing compensation for non-linear effects such as friction and gravity. To assess the proposed upper limb exoskeleton in terms of both control system performances and mechanical structure validation, the full-state feedback controller was compared with two other benchmark-state feedback controllers in both a transparency test—ten subjects, two reference speeds—and a haptic rendering evaluation. Both of the experiments were representative of the intended purpose of the device, i.e., physical interaction with patients affected by limited motion skills. In all experimental conditions, our proposed joint torque controller achieved higher performances, providing transparency to the joints and asserting the feasibility of the exoskeleton for assistive applications

    A Detailed Geochemical Study of a Shallow Arc-related Laccolith; the Torres del Paine Mafic Complex (Patagonia)

    Get PDF
    The shallow crustal Torres del Paine Intrusive Complex in southern Patagonia offers an opportunity to understand the chemical evolution and timing of crystallization processes in shallow plutonic rocks. It is characterized by hornblende-gabbros, gabbronorites, monzodiorites and granitic plutonic rocks. The exceptional exposure of the intrusion permits the identification of two structurally and petrographically different zones. Layered gabbronorite, olivine-bearing pyroxene-hornblende gabbronorite and monzodiorite forming vertical sheets and stocks in the west are referred to here as the feeder zone. These mafic rocks are in vertical contact with younger granitic rocks on their eastern border. The eastern part is a laccolith complex. It is characterized by three major units (I, II, III) of granitic rocks of over 1000 m vertical thickness; these are underlain in places by a sequence of hornblende-gabbro sills intermingled with evolved monzodiorite granite. Chilled, crenulated margins as well as flame structures between gabbroic rocks and monzodiorites suggest that the mafic sill complex remained partially molten during most of its construction. Bulk-rock major and trace element data indicate that the Paine mafic rocks follow a high-K calc-alkaline to shoshonitic differentiation trend. The parental magmas were basaltic trachyandesite liquids, with variable H2O and alkali contents. The majority of the feeder zone gabbronorites have high Al2O3 contents and positive Eu and Sr anomalies, consistent with accumulation of plagioclase and efficient extraction of intercumulus melt. The mafic sill complex largely lacks these cumulate signatures. Comparisons of the intercumulus groundmass in the hornblende-gabbros with intra-sill dioritic stocks and pods reveal similar rare earth element patterns and trace element ratios indicating incomplete extraction of evolved interstitial liquids. The Sr, Nd and Pb isotopic compositions of the mafic and granitic rocks exhibit ranges of 87Sr/86Sr of 0·704-0·708, ΔNd +3·8 to −1·2, 206Pb/204Pb 18·61-18·77, 207Pb/204Pb 15·67-15·67 and 208Pb/204Pb 38·56-38·77. Crystal fractionation and assimilation-fractional crystallization modelling, combined with high-precision U-Pb dating of zircons, indicates that the western feeder zone gabbronorites are linked to the uppermost Paine granite (granite I), whereas the mafic sill complex is younger and not directly related to the voluminous granite units II and III. These results are interpreted to indicate that crystal-liquid separation is facilitated in subvertical, dynamic feeder systems whereas subhorizontal sill complexes are inefficient in separating large volumes of mafic cumulates and complementary felsic rock

    Root reinforcement dynamics in subalpine spruce forests following timber harvest: A case study in Canton Schwyz, Switzerland

    Get PDF
    Root reinforcement is a key factor when dealing with slope stability problems and is an important quantitative criterion for the evaluation of the protective function of forests against shallow landslides, as well as for the adoption of appropriate practices in protection forest management. Although many models have been developed to estimate root reinforcement, a reliable quantification that considers both its spatial and temporal variability still remains a challenge. This work aims to extend the understanding of the long term spatial and temporal dynamics of root reinforcement after forest harvest in subalpine spruce forests by supplying new experimental data and applying a state-of-the-art model.We estimated root reinforcement decay 5, 10 and 15 years after timber had been harvested in spruce stands in a small catchment in the Swiss Alps. We collected root distribution data at different distances from the trees and calibrated and validated a root distribution model (RootDis). To estimate root mechanical properties, we tested roots up to 12 mm diameter in the field, and computed root reinforcement for each case study with the Root Bundle Model. Finally, we developed a new model for the estimation of root reinforcement decay, based on the observed change in root distribution after felling and on the decay of the root pullout force. The final result is a model for the spatial-temporal prediction of root reinforcement heterogeneity and dynamics in subalpine spruce forest stands. Five year old harvested spruce forest in the climatic conditions of the study area provides 40% of the root reinforcement of live forest, while 15 years old harvested forest provides no reinforcement at all. Shrub species and natural regeneration could guarantee almost the 30% of the root reinforcement of a live forest after 15 years from cutting. Additional work is now required to further validate the model and implement these results in a slope stability analysis

    Sustainable water use for rice agro-ecosystems in northern Italy

    Get PDF
    I n the Mediterranean basin, rice is cultivated over an area of 1,300,000 hectares. The most important rice-producing countries are Italy and Spain in Europe (72% of the EU production; 345,000 ha), and Egypt and Turkey among the extra-EU countries (almost totality of the production; 789,000 ha). Traditionally, rice is grown under continuous flooding; thus, it requires much more irrigation than non-ponded crops. The MEDWATERICE project (PRIMA-Section 2-2018; https://www.medwaterice.org/) aims at exploring sustainability of innovative rice irrigation management solutions, in order to reduce rice water consumption and environmental impacts, and to extend rice cultivation outside of traditional paddy areas to meet the escalating demand. Within the MEDWATERICE project, irrigation management options to address the main site-specific problems are being tested for each rice areas involved in the project (IT, ES, PT, EG, TR). Case studies are being conducted in pilot farms, with the involvement of Stake-Holder Panels (SHPs) in each country. Data collected at the farm level will be extrapolated to the irrigation district level, to support water management decisions and policies. Moreover, indicators for quantitative assessment of environmental, economic and social sustainability of the irrigation options will be defined. This work illustrates the first year of results for the Italian Case Study (Lomellina area, Pavia) at the pilot farm scale. This area is characterized by a growing water scarcity in drought years in many districts. Within the farm managed by the National Rice Research Center (CRR), in the agricultural season 2019 the experimentation was conducted in six plots of about 20 m x 80 m each, with two replicates for each of the following water regimes: i) water-seeded rice with continuous flooding (WFL), ii) dry-seeded rice with continuous flooding from the 3-4 leaf stage (DFL), and iii) water seeded-rice with alternate wetting and drying from fertilization at the tillering stage (AWD). One out of the two replicates of each treatment was instrumented with: water inflow and outflow meters, set of piezometers, set of tensiometers and water tubes for the irrigation management in the AWD plots. A soil survey was conducted before the agricultural season (EMI sensor and physico-chemical analysis of soil samples). Periodic measurements of crop biometric parameters (LAI, crop height, crop rooting depth) were performed. Moreover, nutrients (TN, NO3, PO4, K) and two widely used pesticides (Sirtaki \u2013 a.i. Clomazone; Tripion E \u2013 a.i. MCPA) were measured in irrigation water (inflow and outflow), groundwater, and porous cups installed at two soil depths (20 and 70 cm, above and below the plough pan). Finally, rice grain yields and quality (As and Cd in the grain) were determined. First results in terms of cumulative water balance components (rainfall, irrigation inflow and outflow, difference in soil and ponding water storage, evapotranspiration, net percolation), water application efficiency (evapotranspiration over net water input), and water productivity (grain production over net water input), will be presented and discussed. Results of a 1D Richard-equation-based numerical simulation model applied to generalize results obtained under the different irrigation regimes will be moreover illustrated

    Petrological evolution of the magmatic suite associated with the Coroccohuayco Cu(-Au-Fe) porphyry-skarn deposit, Peru

    Get PDF
    The petrological evolution of magmatic rocks associated with porphyry-related Cu deposits is thought to exert a first-order control on ore genesis. It is therefore critical to understand and recognize petrological processes favourable to the genesis of porphyry systems. In this study we present new petrographic, geochemical (whole-rock and mineral), and isotopic (Pb, Sr, Nd) data for rocks from the magmatic suite associated with the Eocene Coroccohuayco porphyry–skarn deposit, southern Peru. Previously determined radiometric ages on these rocks provide the temporal framework for interpretation of the data. Arc-style magmatic activity started at Coroccohuayco with the emplacement of a composite precursor gabbrodiorite complex at c. 40·4 Ma. After a nearly 5 Myr lull, magmatic activity resumed at c. 35·6 Ma with the rapid emplacement of three dacitic porphyries associated with mineralization. However, zircon antecrysts in the porphyries show that intra-crustal magmatic activity started c. 2 Myr before porphyry emplacement and probably built a large intra-crustal magmatic body with an associated large thermal anomaly. Our data suggest that all magmas underwent a period of evolution in the deep crust before transfer and further evolution in the upper crust. The gabbrodiorite complex was sourced from a heterogeneous deep crustal reservoir and was emplaced at a pressure of 100–250 MPa where it underwent a limited amount of fractionation and formed a chemically zoned pluton. Its initial water content and oxygen fugacity were estimated to be around 3 wt % H2O and NNO ± 1 (where NNO is the nickel–nickel oxide buffer), respectively. The deep crustal source of the porphyries appears to have been more homogeneous. The porphyries are interpreted to be the product of advanced differentiation of a parental magma similar to the gabbrodiorite. Most of this evolution occurred at deep crustal levels (around 800 MPa) through fractionation of amphibole + pyroxene + plagioclase ± garnet, leading to the development of a high Sr/Y signature characteristic of porphyry-related magmatism worldwide. Subsequent upper crustal evolution (100–250 MPa) was dominated by crustal assimilation, cannibalism of previously emplaced magma batches (proto-plutons) and magma recharge. Water content and oxygen fugacity were estimated to be around 5 wt % H2O and NNO + 1 to NNO + 2, respectively, at the end of the period of upper crustal evolution. This high oxygen fugacity is inferred to have favoured sulphur and metal enrichment in the melt. The high thermal regime generated through 2 Myr of sustained magmatism in the upper crust favoured crustal assimilation, proto-pluton cannibalism, and efficient metal extraction upon fluid exsolution. The Coroccohuayco magmatic suite appears to have acquired its metallogenic potential (high fO2, high Sr/Y) through several million years of deep crustal evolution
    • 

    corecore