24 research outputs found
Procedimiento de preparación, conservación, y uso en peces, del probiótico SHEWANELLA PUTREFACIENS PDP 11 para el control de enfermedades y la mejora en el crecimiento
Número de solicitud 201100385Procedimiento de preparación, conservación, y uso
en peces, del probiótico Shewanella putresfaciens
Pdp11 para el control de enfermedades y la mejora
en el crecimiento. Preferentemente, el probiótico,
compuesto por células enteras de la cepa Pdp11, se
cultiva en TSAs durante 24 h a 22ºC. La preparación
de una suspensión del probiótico, preferentemente sin
proceso previo de liofilización o de inactivación física
o química, se realiza mediante su incorporación en
una matriz de alginato, preferentemente alginato
sádico al 0,5%. La suspensión preparada se puede
conservar sin pérdida significativa de viabilidad
durante 20 - 30 días a 4ºC. Los productos alimenticios
para peces son preparados mediante la adición en
agitación de la suspensión de probiótico y,
adicionalmente, CaCl2 50 mM, preferentemente
mediante atomización.Universidad de Málaga (50%). Universidad de Almería (50%
Probiotic supplementation influences the diversity of the intestinal microbiota during early stages of farmed Senegalese sole (Solea senegalensis, Kaup, 1858)
Ingestion of bacteria at early stages results in establishment of a primary intestinal microbiota which likely undergoes several stages along fish life. The role of this intestinal microbiota regulating body functions is crucial for larval development. Probiotics have been proved to modulate this microbiota and exert antagonistic effects against fish pathogens. In the present study, we aimed to determine bacterial diversity along different developmental stages of farmed Senegalese sole (Solea senegalensis) after feeding probiotic (Shewanella putrefaciens Pdp11) supplemented diet for a short period (10–30 days after hatching, DAH). Intestinal lumen contents of sole larvae fed control and probiotic diets were collected at 23, 56, 87, and 119 DAH and DNA was amplified using 16S rDNA bacterial domain-specific primers. Amplicons obtained were separated by denaturing gradient gel electrophoresis (DGGE), cloned, and resulting sequences compared to sequences in GenBank. Results suggest that Shewanella putrefaciens Pdp11 induces a modulation of the dominant bacterial taxa of the intestinal microbiota from 23 DAH. DGGE patterns of larvae fed the probiotic diet showed a core of bands related to Lactobacillus helveticus, Pseudomonas acephalitica, Vibrio parahaemolyticus,and Shewanella genus, together with increased Vibri o genus presence. In addition, decreased number of clones related to Photobacterium damselae subsp piscicida at 23 and 56 DAH was observed in probiotic-fed larvae. A band corresponding to Shewanella putrefaciens Pdp11 was sequenced as predominant from 23 to 119 DAH samples, confirming the colonization by the probiotics. Microbiota modulation obtained via probiotics addition emerges as an effective tool to improve Solea senegalensis larviculture.En prens
Intestinal microbiota diversity of the flat fish Solea senegalensis (Kaup, 1858) following probiotic administration
Pleuronectiforms are an important group of fish, and one of their species, Solea senegalensis (Kaup 1858), has been extensively studied at different levels, although information about its intestinal microbiota and the effects of different factors on it is very scarce. Modern aquaculture industry demands strategies which help to maintain a microbiologically healthy environment and an environmentally friendly aquaculture. In this context, probiotics seem to offer an attractive alternative. The intake of probiotics could modify the composition of the intestinal microbiota, which is a key component in excluding potential invaders and maintaining health. The aim of this study was to evaluate by 16S rRNA gene analysis using polymerase chain reaction-denaturing gradient gel electrophoresis the effect of administering fresh or lyophilized cells of Pdp11 on the intestinal microbiota of farmed Senegalese sole, using sodium alginate to facilitate the incorporation of bacterial cells to the feed. The results obtained showed that the composition of fish intestinal microbiota was affected when fish received a diet supplemented with sodium alginate and fresh or lyophilized probiotic cells. In all cases, the dominant bacterial groups belonged to γ-Proteobacteria and mainly the Vibrio species. The use of sodium alginate reduced the incidence of populations with <97% 16S rRNA gene sequence identity to uncultured microorganisms in the intestinal microbiota until non-detected limits. On the other hand, the supplementation of the diet with probiotics produced an increase of the predominant species related to Vibrio genus.S