34 research outputs found

    Impact of controlled atmosphere scheduling on strawberry and imported avocado fruit

    Get PDF
    British grown strawberry cv. Sonata and Chilean avocado cv. Hass were exposed to controlled atmospheres (CA) of 15 kPa CO2 + 5 kPa O2 (5 °C) and 10 kPa CO2 + 5 kPa O2 (5 or 20 °C), respectively, at early, middle or late stages during postharvest storage of avocados and at early and middle stages for strawberries. Real-time respiration rate (RR) was measured during CA storage and regular fruit sampling carried out to assess disease severity, objective colour, ethylene production and firmness. The automated in situ set-up used allowed continuous recordings of real-time respiration measurements without disruption to the CA environment. Cold stored strawberry fruit treated for 2.5 d with CA midway through the storage period were firmer and maintained a more vibrant colour despite bursts of increased RR. Furthermore, just 2.5 d of CA was sufficient to extend the shelf-life of strawberries (based on disease incidence) by a further 3 d, as compared to control. Irrespective of timing, RR of avocado stored at 20 °C was reduced while under CA environment; and early CA exposure maintained firmness yet increased the incidence of internal discolouration 7 d after removal from CA. At 5 °C, avocado skin colour and internal discolouration were positively affected by the mid CA treatment. These results are discussed in the context of the targeted use of CA, compared to control, for extending shelf-life, and reducing waste of these two different fruit produces. Furthermore, reducing the length of time required for CA application, which has not previously been explored in avocado or strawberries, would potentially be more energy efficient/cost effective

    Almost 25 years of chromatographic and spectroscopic analytical method development for petroleum hydrocarbons analysis in soil and sediment: State-of-the-art, progress and trends

    Get PDF
    This review provides a critical insight into the selection of chromatographic and spectroscopic techniques for semi-quantitative and quantitative detection of petroleum hydrocarbons in soil and sediment matrices. Advantages and limitations of both field screening and laboratory-based techniques are discussed and recent advances in chemometrics to extract maximum information from a sample by using the optimal pre-processing and data mining techniques are presented. An integrated analytical framework based on spectroscopic techniques integration and data fusion for the rapid measurement and detection of on-site petroleum hydrocarbons is proposed. Furthermore, factors influencing petroleum hydrocarbons analysis in contaminated samples are discussed and recommendations on how to reduce their influence provided

    Application of novel technologies to reach net‐zero greenhouse gas emissions in the fresh pasteurised milk supply chain: A review

    Get PDF
    This review assesses the potential of three novel technologies (3-nitrooxypropanol, ultraviolet C light cold pasteurisation and biochar) to reduce the carbon footprint produced by the fresh milk supply chain at global level. In addition to the adoption of these technologies: (i) new policies should enhance the development and implementation of international standards to optimise the quality and safety of such technologies whilst facilitating their traceability; (ii) dairy firms and technology start-ups should benefit from worldwide emissions trading systems to limit technology implementation costs; and (iii) consumers could participate in the net-zero challenge by adopting easy-to-apply sustainable practices, thus reducing their milk carbon footprint

    Rapid detection of alkanes and polycyclic aromatic hydrocarbons in oil-contaminated soil with visible near-infrared spectroscopy

    Get PDF
    Recent developments and applications of rapid measurement tools (RMTs) such as visible near‐infrared (vis–NIR) spectroscopy confirmed that these technologies can provide ‘fit for purpose’ and cost‐effective data for risk assessment and management of oil‐contaminated sites. Although vis–NIR spectroscopy has been used frequently to predict total petroleum hydrocarbons (TPHs), it has had limited use for polycyclic aromatic hydrocarbons (PAHs) and there has been none for alkanes. In the present study, the potential of vis–NIR spectroscopy (350–2500 nm) to measure PAHs and alkanes in 85 fresh (wet, unprocessed) oil‐contaminated soil samples collected from three sites in the Niger Delta, Nigeria, was evaluated. The vis–NIR signal and alkanes and PAHs measured in the laboratory by sequential ultrasonic solvent extraction followed by gas chromatography‐mass spectrometry (GC‐MS) were then used to develop calibration models using partial least squares regression (PLSR) and random forest (RF) modelling tools. Prior to model development, the pre‐processed spectra were divided into calibration (75%) and prediction (25%) sets. Results showed that the prediction performance of RF calibration models for both alkanes (a coefficient of determination (R2) of 0.58, a root mean square error of prediction (RMSEP) of 53.95 mg kg−1 and a residual prediction deviation (RPD) of 1.59) and PAHs (R2 = 0.71, RMSEP = 0.99 mg kg−1 and RPD = 1.99) outperformed PLSR (R2 = 0.36, RMSEP = 66.66 mg kg−1 and RPD = 1.29, and R2 = 0.56, RMSEP = 1.21 mg kg−1 and RPD = 1.55, respectively). The RF modelling approach accounted for nonlinearity of the soil spectral responses and therefore resulted in considerably greater prediction accuracy than the linear PLSR. Adoption of vis–NIR spectroscopy coupled with RF is recommended for rapid and cost‐effective assessment of PAHs and alkanes in contaminated soil

    Fructans redistribution prior to sprouting in stored onion bulbs is a potential marker for dormancy break

    Get PDF
    Continuous supply of high quality onion bulbs to meet year-round demand is dependent on maintaining dormancy and bulb quality during storage. Sprouting impacts negatively on the storage quality of onion bulbs. Ethylene supplementation has previously been revealed to inhibit sprout growth in stored onion bulbs. Fructans content, especially those at higher degree of polymerisation (DP), are reported to positively correlate with delayed sprouting. However, little is known about the impact of pre-harvest irrigation regimes on fructans accumulation and redistribution in relation to onion bulb dormancy and quality in store. Across two seasons, onion plants of cultivars ‘Red Baron’ and ‘Sherpa’ were subjected to full irrigation (FI) (100% replenishment of crop evapotranspiration) or deficit irrigation (DI) (50% of FI treatment) from bulb initiation to harvest. Bulbs were harvested at full maturity and stored at 1 °C for five months. Bulbs were treated with or without 1-MCP (1 ΌL L−1) for 24 h before storage under continuous ethylene supplementation (10 ΌL L−1) or air. DI had no effect on dormancy-break, sprout emergence, total fructans content and total sugar content. In contrast, ethylene delayed sprout emergence and suppressed sprout growth; added 1-MCP enhanced this effect. The concentration of DP3-8 fructans were higher in top and bottom sections compared to the baseplate. Before sprout emergence, fructans of DPs 7–8 were no longer present in the top and bottom wedges, while they accumulated in the baseplate; irrespective of pre- or postharvest treatments. This redistribution of fructans within the bulb suggested a transition in dormancy state and could be used as a predictive marker for sprouting in stored onion bulbs

    Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using vis-NIR spectroscopy and regression techniques

    Get PDF
    Petroleum hydrocarbons contamination in soil is a worldwide significant environmental issue which has raised serious concerns for the environment and human health (Brevik and Burgess, 2013). Petroleum hydrocarbons encompass a mixture of short and long-chain hydrocarbon compounds. However the difference between the term petroleum hydrocarbons (PHC) as such and the term total petroleum hydrocarbons (TPH) should be noted. PHC typically refer to the hydrogen and carbon containing compounds that originate from crude oil, while TPH refer to the measurable amount of petroleum-based hydrocarbons in an environmental matrix and thus to the actual results obtained by sampling and chemical analysis (Coulon and Wu, 2017). TPH is thus a method-defined term. Among a range of techniques, gas chromatography is preferred for the measurement of hydrocarbon contamination in environmental samples, since it allows to detect a broad range of hydrocarbons and can provide both sensitivity and selectivity depending on the detector and hyphenated configuration used (Brassington et al., 2010; Drozdova et al., 2013). However, GC-based techniques can be time consuming and expensive and do not allowed rapid and broad scale analysis of petroleum contamination on-site (Okparanma and Mouazen, 2013; Okparanma et al., 2014)

    Spatial changes in leaf biochemical profile of two tea cultivars following cold storage under two different vapour pressure deficit (VPD) conditions

    Get PDF
    Withering is considered a crucial stage of black tea processing. In this study, tea shoots from two cultivars (cvs. Yabukita and Clone 2) were stored at 5 °C, in either a low or high vapour pressure deficit (VPD) environment, to determine the impact of different withering rates on physiology (viz. respiration rate [RR], colour and moisture loss) and biochemical profile (viz. individual catechins, methylxanthines) of tea shoots (Camellia sinensis). Low VPD and high VPD conditions during withering increased caffeine levels in Clone 2 and Yabukita, respectively (p < 0.05). Caffeine levels steadily increased over time in both cultivars (p < 0.05), coinciding with a rapid decline in theobromine (TB). Furthermore, stems contained lower epigallocatechin gallate (EGCG) and caffeine (ca. 75 and 56%, respectively) compared to bud and larger leaf (LL) (p < 0.05). Overall, the results of this study highlight factors such as mechanical harvesting, and hard or soft withering, which could affect final tea beverage quality

    Evaluation of vis-NIR reflectance spectroscopy sensitivity to weathering for enhanced assessment of oil contaminated soils

    Get PDF
    This study investigated the sensitivity of visible near-infrared spectroscopy (vis-NIR) to discriminate between fresh and weathered oil contaminated soils. The performance of random forest (RF) and partial least squares regression (PLSR) for the estimation of total petroleum hydrocarbon (TPH) throughout the time was also explored. Soil samples (n = 13) with 5 different textures of sandy loam, sandy clay loam, clay loam, sandy clay and clay were collected from 10 different locations across the Cranfield University's Research Farm (UK). A series of soil mesocosms was then set up where each soil sample was spiked with 10 ml of Alaskan crude oil (equivalent to 8450 mg/kg), allowed to equilibrate for 48 h (T2 d) and further kept at room temperature (21 °C). Soils scanning was carried out before spiking (control TC) and then after 2 days (T2 d) and months 4 (T4 m), 8 (T8 m), 12 (T12 m), 16 (T16 m), 20 (T20 m), 24 (T24 m), whereas gas chromatography mass spectroscopy (GC–MS) analysis was performed on T2 d, T4 m, T12 m, T16 m, T20 m, and T24 m. Soil scanning was done simultaneously using an AgroSpec spectrometer (305 to 2200 nm) (tec5 Technology for Spectroscopy, Germany) and Analytical Spectral Device (ASD) spectrometer (350 to 2500 nm) (ASDI, USA) to assess and compare their sensitivity and response against GC–MS data. Principle component analysis (PCA) showed that ASD performed better than tec5 for discriminating weathered versus fresh oil contaminated soil samples. The prediction results proved that RF models outperformed PLSR and resulted in coefficient of determination (R2) of 0.92, ratio of prediction deviation (RPD) of 3.79, and root mean square error of prediction (RMSEP) of 108.56 mg/kg. Overall, the results demonstrate that vis–NIR is a promising tool for rapid site investigation of weathered oil contamination in soils and for TPH monitoring without the need of collecting soil samples and lengthy hydrocarbon extraction for further quantification analysis

    Effect of UV-C on the physiology and biochemical profile of fresh Piper nigrum berries

    Get PDF
    Application of UV-C has been shown to enhance the biochemical profile of various plant materials. This could be used to increase biochemical load, reducing the amount of material required but still impart equivalent flavour. As spices, such as black pepper (Piper nigrum L.), are typically dried to low moisture content to create a stable product for transportation and storage, little work has explored the use of modern postharvest treatments to enhance flavour. In this work, fresh P. nigrum berries were exposed to four UV-C doses (0, 1, 5 and 15 kJ m−2) and subsequently stored at 5 °C for ca. 4 weeks. Two separate experiments (early and late season) were conducted across one season. Replicate P. nigrum berry clusters were stored separately within continuously ventilated 13 L boxes. Real-time respiration rate (ex situ), ethylene production, fruit colour and water potential were measured at regular intervals during storage. In addition, piperine and essential oils were assessed using a simple newly developed method which enabled both compound groups to be simultaneously extracted and subsequently quantified. UV-C was found to cause significant changes in colour (from green to brown) whilst also altering the biochemical composition (piperine and essential oils), which was influenced by UV-C dose and berry maturity. Low to medium UV-C doses could potentially enhance flavour compounds in black pepper enabling processors to create products with higher biochemical load

    Investigating the involvement of ABA, ABA catabolites and cytokinins in the susceptibility of ‘Nules Clementine’ mandarin to rind breakdown disorder

    Get PDF
    Abstract BACKGROUND Nules Clementine’ mandarin was used to investigate the potential involvement of endogenous plant hormones in mediating the citrus fruit susceptibility to rind breakdown disorder (RBD). The effect of light exposure (viz. canopy position and bagging treatments) on the endogenous concentration of ABA, 7’hydroxy‐abscisic acid (7‐OH‐ABA), ABA‐glucose ester (ABA‐GE) and dihydrophaseic acid (DPA), and t‐zeatin was tested using four preharvest treatments: outside, outside bagged, inside and inside bagged. Phytohormones concentration was evaluated during 9 weeks of postharvest storage at 8 °C. RESULTS The shaded fruit inside the canopy had the highest RBD score (0.88) at the end of postharvest storage, while sun‐exposed fruit had the lowest score (0.12). Before storage, ABA concentration was lowest (462.8 ÎŒg kg‐1) for inside fruit, and highest in outside bagged fruit (680.5 ÎŒg kg‐1). Although ABA concentration suddenly increased from the third week, reaching a maximum concentration of 580 ÎŒg kg‐1 at week 6 in fruit from inside position, it generally reduced 1.6‐fold ranging from 240.52 to 480.65 ÎŒg kg‐1 throughout storage. The increase of 7‐OH‐ABA was more prominent in fruit from inside canopy. Overall, the concentration of ABA‐GE increased 3‐fold with storage time. DPA concentration of bagged fruit from inside canopy position was significantly higher compared to outside fruit. The lower ABA‐GE and higher DPA concentration in inside bagged fruit throughout storage also coincided with higher RBD. CONCLUSION The strong positive correlations between 7‐OH‐ABA, DPA and RBD incidence demonstrated that these ABA catabolites could be used as biomarkers for fruit susceptibility to the disorder
    corecore