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Abstract: Visible and near infrared spectrometry (vis-NIRS) coupled with data mining techniques can

offer fast and cost-effective quantitative measurement of total petroleum hydrocarbons (TPH) in

contaminated soils. Literature showed however significant differences in the performance on the vis-

NIRS between linear and non-linear calibration methods. This study compared the performance of

linear partial least squares regression (PLSR) with a nonlinear random forest (RF) regression for the

calibration of vis-NIRS when analysing TPH in soils. 88 soil samples (3 uncontaminated and 85

contaminated) collected from three sites located in the Niger Delta were scanned using an analytical

spectral device (ASD) spectrophotometer (350-2500 nm) in diffuse reflectance mode. Sequential

ultrasonic solvent extraction-gas chromatography (SUSE-GC) was used as reference quantification

method for TPH which equal to the sum of aliphatic and aromatic fractions ranging between C10 and

C35. Prior to model development, spectra were subjected to pre-processing including noise cut,

maximum normalization, first derivative and smoothing. Then 65 samples were selected as calibration

set and the remaining 20 samples as validation set. Both vis-NIR spectrometry and gas chromatography

li2106
Text Box
Science of the Total Environment, Volume 616-617, March 2017, pp147-155
DOI: 10.1016/j.scitotenv.2017.10.323




li2106
Text Box
Published by Elsevier. This is the Author Accepted Manuscript issued with: Creative Commons Attribution Non-Commercial No Derivatives License (CC:BY:NC:ND 4.0).  
The final published version (version of record) is available online at DOI:10.1016/j.scitotenv.2017.10.323. Please refer to any applicable publisher terms of use.





2

profiles of the 85 soil samples were subjected to RF and PLSR with leave-one-out cross-validation

(LOOCV) for the calibration models. Results showed that RF calibration model with a coefficient of

determination (R2) of 0.85, a root means square error of prediction (RMSEP) 68.43 mg kg-1, and a

residual prediction deviation (RPD) of 2.61 outperformed PLSR (R2 = 0.63, RMSEP = 107.54 mg kg-1

and RDP =2.55) in cross-validation. These results indicate that RF modelling approach is accounting

for the nonlinearity of the soil spectral responses hence, providing significantly higher prediction

accuracy compared to the linear PLSR. It is recommended to adopt the vis-NIRS coupled with RF

modelling approach as a portable and cost effective method for the rapid quantification of TPH in soils.

Key words: Total petroleum hydrocarbons; vis-NIR spectroscopy; chemometric methods, Partial least

squares regression, Random Forest regression
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1. Introduction

Petroleum hydrocarbons contamination in soil is a worldwide significant environmental issue which

has raised serious concerns for the environment and human health (Brevik and Burgess, 2013).

Petroleum hydrocarbons encompass a mixture of short and long-chain hydrocarbon compounds.

However the difference between the term petroleum hydrocarbons (PHC) as such and the term total

petroleum hydrocarbons (TPH) should be noted. PHC typically refer to the hydrogen and carbon

containing compounds that originate from crude oil, while TPH refer to the measurable amount of

petroleum-based hydrocarbons in an environmental matrix and thus to the actual results obtained by

sampling and chemical analysis (Coulon and Wu, 2017). TPH is thus a method-defined term. Among a

range of techniques, gas chromatography is preferred for the measurement of hydrocarbon

contamination in environmental samples, since it allows to detect a broad range of hydrocarbons and

can provide both sensitivity and selectivity depending on the detector and hyphenated configuration

used (Brassington et al., 2010; Drozdova et al., 2013). However, GC-based techniques can be time

consuming and expensive and do not allowed rapid and broad scale analysis of petroleum

contamination on-site (Okparanma and Mouazen, 2013; Okparanma et al., 2014).

Among potential rapid measurement techniques that can be carried out on-site, reflectance

spectroscopy, including the visible and near infrared (vis-NIRS) and mid infrared ranges, is one of the

most promising techniques for detecting and quantifying TPH (Okparanma and Mouazen, 2013).

Reflectance spectroscopy measures the diffuse reflected electromagnetic energy from samples (i.e. soil

or sediment) subjected to a light source; by modelling the sample spectral data against samples with

known chemical composition and concentration levels, calibration models for quantifying key

attributes can be established. However, to date very limited studies on the use of reflectance

spectroscopy for the analyses of TPH in soil can be found in the literature.
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There are also several factors affecting the measurement accuracy of reflectance spectroscopy,

including among others the quality of the laboratory reference data and spectra, and adopted pre-

processing and modelling techniques (Viscarra and Behrens, 2010; Nawar et al., 2016). Partial least-

squares regression (PLSR) is the most common multivariate analysis method, as it is capable to model

several response variables simultaneously while effectively addressing strongly collinear and noisy

predictor variables (Wold, 2001). It is important to mention that PLSR is a linear approach that may not

perform well when solving nonlinear behaviour, e.g., like those of soil. Random Forest (RF) is

typically known as a hierarchical nonparametric method that estimates complex nonlinear relationships

among independent and dependent variables. RF method was reported to be outperformed by PLSR,

adaptive regression splines (MARS), artificial neural network (ANN) and support vector machine

(SVM) for the analysis of soil organic carbon, clay content and pH (Viscarra and Brehen, 2010;

Breiman, 2001) whereas Knox et al., (2015) reported that RF outperformed PLSR for the analysis of

soil total carbon (TC) with residual prediction deviation (RPD) of 2.7 and 2.6 for RF and PLSR,

respectively. For TPH analysis using vis-NIRS, a recent study by Chakraborty et al. (2015) showed

PLSR outperformed both penalised spline regression (PSR) and RF modelling approaches; the authors

reported residual prediction deviation (RPD) of 1.64, 1.86, and 1.96 for RF, PSR, and PLSR,

respectively. This single study comparing the performance of RF with PLSR for the analysis of TPH

may not confirm this trend to be correct, as previous work reported RF to outperform PLSR for

modelling of other soil properties (Knox et al., 2015). Therefore, it is essential to evaluate the

capability of the RF as a nonlinear modelling approach for modelling TPH content in the soil and to

confirm whether or not TPH can be predicted with RF with higher accuracy than with PLSR. To the

best of our knowledge, there is to date no study where RF modelling has been applied to estimate TPH

in soils based on vis-NIR spectroscopy with a limited soil data set. Thus, the aim of this study is to
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compare the performance of PLSR linear modelling technique with RF nonlinear technique to predict

TPH in oil-contaminated soils from Niger Delta, Southern Nigeria, using vis-NIR spectroscopy.

2. Materials and methods

2.1 Study area and sample collection

The study area located in Bayelsa and Rivers State, Niger Delta, Southern Nigeria has a tropical rain

forest climate characterised by two seasons: the rainy season lasts for about 7 months between April

and October with an overriding dry period in August (known as August break); and the dry season

lasts for about 5 months, between November and March. The temperature varies between 25°C and

35°C. The regional geology of the Niger Delta is relatively simple, consisting of Benin, Agbada (the

kitchen of kerogen) and Akata Formations, overlain by various types of Quaternary deposits (Kogbe,

1989; Wright et al., 1985). A total of 85 representative spot sample points were collected randomly

from three oil contaminated sites (Ikarama: 31 samples; Kalabar: 21 samples; and Joinkrama: 33

samples) in August 2015. The soil samples (approx. 5 kg) were collected in the top 15-cm soil layer

using a shovel. In addition, three uncontaminated samples were collected (2 samples from Joinkrama,

1 sample from Kalabar) for control purpose. Fig. 1 shows the sampling location map. Soil samples

were kept in air-tight centrifuge tubes and stored at 4 °C using ice block to avoid hydrocarbon

volatilisation and preserve field-moist status until shipment to Cranfield University. The samples were

then stored at -20oC prior to GC-MS analysis.
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Figure 1 Soil sampling locations for the three sites.

2.2 Soil physiochemical properties

Prior to soil physiochemical properties analysis, soil samples were grouped based on the variation of

the soil texture using the “Feel Method” (Thien, 1979). Then two representative samples were selected

from each texture class with a total of 10 samples per site. Therefore soil physicochemical properties

were determined on 30 soil samples selected to represent soil spatial variation in the study. This

approach was used due to limited of amount of soil that could be transported back to the UK for

analysis. Soil pH was measured following the Standard Operating Procedure (SOP) of the British
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Standard BS ISO 10390:2005; the total organic carbon (TOC) was determined using a Vario III

Elemental Analyser using SOP based on British Standard BS 7755 Section 3.8: 1995 and the particle

size was determined using SOP based on British Standard BS 7755 Section 5.4:1995.

2.3 Soil scanning and spectral analysis

The diffuse reflectance spectra of the soil samples were measured using an ASD LabSpec2500® Vis–

NIR spectrophotometer which covers a spectral range of 350–2500 nm (Analytical Spectral Devices,

Inc., USA). With a spectral interval resolution varying of 3 nm at a wavelength of 700 nm and of 6 nm

between 1400-1200 nm, the ASD LabSpec2500® spectrometer recorded a total 2151 spectral bands.

The spectral measurements were made in the dark in order to both, control the illumination conditions

and reduce the effects of stray light. The high-intensity probe has a built-in light source made of a

quartz-halogen bulb of 2727 °C. The light source and detection fibres are assembled in the high-

intensity probe enclosing a 35° angle. Before use, and after every 30 minutes, the instrument was

calibrated by white-referencing with a white Spectralon disc of ca. 100% reflectance. Three

subsamples (field- moist) from each soil sample were packed into plastic Petri dishes (1 cm height, 5.6

cm diameter) for vis-NIR DRS spectra measurement. To obtain optimal diffuse reflection, and hence, a

good signal-to-noise ratio, all plant and pebble particles were removed and surface was smoothened

gently with a spatula for scanning (Mouazen et al., 2005). Spectral measurements of all samples were

recorded by placing the sample in direct contact with the high intensity probe. For each sample, 10

successive spectra measurements were acquired and further averaged in one representative spectrum of

a soil sample. To avoid biased predictions due to noise, only 416-2384 nm spectral range was used to

develop the calibration models. The raw average spectra were subjected to pre-processing including

successively, noise cut, maximum normalization, first derivative and smoothing with R software (R

Core Team, 2013). Maximum normalisation was then implemented to align all spectra to the same
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scale or to obtain even distribution of the variances and average values. Spectra were then subjected to

first derivation using Gap–segment derivative (gapDer) algorithms (Norris, 2001), with a second-order

polynomial approximation. Finally, the Savitzky-Golay smoothing was carried out to remove noise

from spectra (Okparanma and Mouazen, 2013). These routines were aimed at keeping useful chemical

and physical information (Naes et al., 2002). The same pre-processed data was used for both PLSR and

RF analyses.

2.4 Gas chromatography and hydrocarbons quantification

The petroleum hydrocarbons extraction method and GC-MS analysis used in this study followed the

procedure described by Risdon et al. (2008) with some modifications. Briefly, 5 g of soil sample was

mixed with 20 ml of dichloromethane (DCM): hexane (Hex) solution (1:1, v/v), shaken for 16 h at 150

oscillations per min over 16 h, and finally sonicated for 30 min at 20°C. After centrifugation, extracts

were cleaned on Florisil® columns by elution with hexane. Deuterated alkanes and PAHs internal

standards were added to extracts at appropriate concentrations. The final extract was diluted (1:10) for

GC-MS analysis. Deuterated alkanes (C10d22, C19d40 and C30d62) and PAH (naphthalene d8, anthracene

d10, chrysene d12 and perylene d12) internal standards were added to extracts at 0.5 µg ml-1 and 0.4 µg ml-

1, respectively. Aliphatic hydrocarbons and PAHs were identified and quantified using an Agilent

5973N GC-MS operated at 70 eV in positive ion mode. The column used was a Zebron fused silica

capillary column (30 x 0.25 mm internal diameter, Phenomenex) coated with 5MS (0.25 µm film

thickness). Splitless injection with a sample volume of 1 µL was applied. The oven temperature was

increased from 60 °C to 220 °C at 20 °C min-1 then to 310 °C at 6 °C min-1 and held at this temperature

for 15 min. The mass spectrometer was operated using the full scan mode (range m/z 50-500) for

quantitative analysis of target alkanes and PAHs. For each compound, quantification was performed by

integrating the peak at specific m/z using auto-integration method with Mass Selective Detector (MSD)
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ChemStation software. External multilevel calibrations were carried out for both alkanes and PAH

quantification ranging from 0.5 to 2500 µg ml-1 and from 1 to 5 µg ml-1, respectively. For quality

control, a 500 µg ml-1 diesel standard solution (ASTM C12-C60 quantitative, Supelco) and mineral oil

mixture Type A and B (Supelco) were analysed every 20 samples. The variation of the reproducibility

of extraction and quantification of soil samples were determined by successive injections (n=7) of the

same sample and estimated to ±8%. In addition, duplicate reagent control and reference material were

systematically used. The reagent control was treated following the same procedure as the samples

without adding soil sample. The reference material was an uncontaminated soil of known

characteristics, and was spiked with a diesel and mineral oil standard at a concentration equivalent to

16,000 mg kg-1. Relative standard deviation (RSD) values for all the soils was <10%. The limit of

quantification (LOQ) of 0.02 mg kg-1 customarily used for PAH in Nigerian laboratories was adopted

for this study because samples were collected from Nigeria. The LOQ was defined as the lowest

concentration, at which an analyte can be reliably detected (Mitra, 2003). As such, any value below

0.02 mg/kg was considered unreliable and ignored from the computation. Finally, the TPH data was

obtained by the sum of the aliphatic fractions and the PAH for each sample analysed.

2.5 Development of calibration models

A two dimensional data matrix was developed by combining the pre-processed spectra (predictor) of 85

soil samples and the TPH reference values (dependent variable) where the resolved spectral bands

(wavelengths) were defined as Xi (the predictor variables), and TPH concentrations as Yi (the response

variables). The dataset was divided into 75% for calibration (65 samples) and 25% for prediction

(independent validation) (20 samples). The selection was done by means of the Kennard-Stone

algorithm which allows to select samples with a uniform distribution over the predictor space (Kennard

and Stone, 1969). It is a stepwise procedure by maximizing the Euclidean distance based on the
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important number of principal components to the objects already chosen. The analyses was performed

using ‘prospectr’ packages in R (Stevens and Lopez, 2013).

2.5.1. Partial least squares regression (PLSR)

PLSR is a widely multivariate analysis method often used in chemometrics. This method is introduced

in (Wold, 2001; Gelad and Kowalski, 1986). The algorithm uses a linear multivariate model to relate

two data matrices – the predictor variables, X, and the response variables, Y. Information in the

original X data is projected onto a small number of underlying orthogonal (“latent”) variables called

latent variables. In this study, the reflectance values for all 2151 spectral wavelengths comprise the set

of Xi variables and the TPH reference values is the Yi variables. PLSR with full cross-validation was

used to relate the variation in a single-component variable (e.g. TPH) to the variation in a multi-

component variable (e.g. wavelength) by means of using package ‘pls’ available in R software (R Core

Team, 2013). The optimal number of latent variables (factors) for future predictions was determined on

the basis of the number of factors with the smallest RMSEP. To develop the calibration model, 75% of

the samples were used while the remaining 25% were used for prediction.

2.5.2. Random forest regression

Random forest (RF) is an ensemble learning method for classification and regression, which generates

many classifiers and aggregates their results (Breiman, 2001).Tree diversity guarantees RF model

stability, which is achieved by two means: (1) a random subset of predictor variables is chosen to grow

each tree and (2) each tree is based on a different random data subset, created by bootstrapping, i.e.

sampling with replacement (Efron, 1979). Instead of testing the performance of all p variables, a

modified algorithm is used for splitting at each node. The size of the subset of variables used to grow

each tree (mtry) has to be selected by the user. Each tree grows until it reaches a predefined minimum
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number of nodes (nodesize). The default mtry value is the square root of the total number of variables

(Abdel-Rahman et al., 2014). Therefore, ntrees needs to be set sufficiently high. Consequently, RFs do

not over fit when more trees are added, but produce a limited generalisation error (Peters et al., 2007).

The same datasets used in PLS (75% calibration, 25% validation) were utilised for RF and all

wavelengths have been included in the RF analysis. The optimal number of trees to be grown (ntree),

number of predictor variables used to split the nodes at each partitioning (mtry), and the minimum size

of the leaf (nodesize) were set to 500, 2, and 2, respectively. These parameters were determined by the

tune RF function implemented in the R software package, named Random Forest Version 4.6-12 (Liaw

and Wiener, 2015), based on Breiman and Cutler's Fortran code (Breiman, 2001).

2.6 Evaluation of model performance

The performance of TPH prediction models were assessed using: (i) the coefficient of determination in

prediction R2, (ii) root mean square error of prediction (RMSEP), (iii) residual prediction deviation

(RPD) which is a ratio of standard deviation (SD) to RMSEP, and (iv) the ratio of the performance to

interquartile distance (RPIQ) which is expressed as the difference between the third and first per root

mean square error (RMSE) (Bellon-Maurel and McBratney, 2011). In this study, we adopted (Viscarra

et al., 2006)  model classification criterion RPD < 1.0 indicates very poor model predictions, 1.0 ≤ RPD 

< 1.4 indicates poor, 1.4 ≤ RPD < 1.8 indicates fair, 1.8 ≤ RPD < 2.0 indicates good, 2.0 ≤ RPD < 2.5 

indicates very good, and excellent if RPD > 2.5. In general, a good model prediction would have high

values of R2 and RPD, and small value of RMSEP.
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3. Results and discussion

3.1. Soil chemical analyses

A summary of the soil samples physicochemical properties and TPH concentration determined by GC-

MS is provided in Table 1 and Figure 2.

Table 1 Soil properties and TPH concentrations of the soil samples collected

No Min. Mean Median 1st Qu. 3rd Qu. Max. SD

TOC (%) 30 1.11 4.55 3.85 1.79 5.71 12.69 3.30

pH 30 5.20 6.25 5.95 5.73 6.73 8.20 0.83

Sand (%) 30 0.83 25 25 14 33 57 15

Silt (%) 30 19 45 49 34 57 71 14

Clay (%) 30 13 30 30 19 34 60 12

TPH (mg kg-1) 85 16.07 252.59 213.69 120.66 339.27 666.33 165.51

TPH (mg kg-1) = Total petroleum hydrocarbons; 1st Qu. = first quartile; 3rd Qu. = third quartile; SD =

standard deviation.

The total organic carbon (TOC) content varies between low to medium with the mean and maximum

values of 1.1% and 12.7%, respectively. The TOC content is larger than 2.0% for 70% of samples.

Clay content ranged between 13% and 60%, with a mean value of 30%. Silt content is high with

minimum and maximum values of 19% and 71%, and samples with silt content >40% comprised 66%

of all soil samples. Soil texture varies between sandy clay loam to clay loam according to the United

States soil texture classification (Soil Survey Staff, 1999).
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Figure 2. Histograms, box-plots with outliers of total petroleum hydrocarbon (TPH) of 85 soil samples,

and total organic carbon (TOC), pH, sand, silt and clay content of selected soil samples (30).

Substantial variability was observed for soil pH ranging between 5.2 and 8.2. The TPH values ranged

between 16 and 666 mg kg-1 with mean and standard deviations of 253 mg kg−1 and 166 mg kg−1,
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respectively. No significant relationship was identified between TOC, pH, sand, silt, clay, and TPH

content (randomization test p-values ranged between 0.38 to 0.9 and 0.11 at 0.05 or 0.01 significant

level, respectively) (Figure 3).

Figure 3. Scatterplot matrix for possible pairs of soil variables (lower diagonal), histograms with

kernel density overlays for each the target variable (middle) and absolute value of the correlations at

significance level of 0.05 (*) and 0.01(**) between the defined pairs of variables (upper diagonal). Soil

variables are total petroleum hydrocarbon (TPH), total organic carbon (TOC), pH, sand, silt and clay

content of the selected soil samples (30).

Table 2 shows the average concentrations of the hydrocarbon fractions and the TPH concentration in

85 soil samples. The alkanes and PAH distribution is medium/heavy-end skewed and unimodal with a

higher proportion of nC16-C21 hydrocarbons suggesting a mid-range distillate heavy oil product type.

The average concentrations for the nC16-C21 alkanes ranged between 5.4 and 372 mg kg-1 and the nC16-
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C21 PAHs between 0.1 and 2.0 mg kg-1 (Table 2). Site 1 had higher average TPH concentration,

followed by site 3 and 2. The LOQ for every PAH is shown in Table 3. The lowest and highest LOQ in

site 1 were 0.02 and 0.47 mg kg-1 for fluorene and acenaphtylene, respectively. In site 2, the lowest

LOQ was 0.02 mg kg-1 and for Indeno[1,2,3-c,d]anthracene, whereas the highest was 0.26 mg kg-1 for

Benzo[k]fluoranthrene. While the lowest LOQ was 0.04 mg kg-1 for fluorene, the highest was 1 mg/kg

and for indeno[1,2,3-c,d]anthracene.

3.2. Spectral analysis of the oil-contaminated

Figure 4 shows the average raw spectra and average continuum removed spectra for uncontaminated

samples (n=3) and contaminated samples (n=85). Figure 4 shows average raw reflectance spectra and

continuum removed reflectance spectra for uncontaminated and contaminated soil samples,

respectively. The average raw spectra and the average of continuum removed spectra for the 85 soil

samples showed that oil contaminated soil samples with high TPH content (≥ 654 mg kg−1) and

uncontaminated soil sample with TPH below 0.04 mg kg−1 (as a control). Overall, the spectrum

response (reflectance) pattern is similar for both contaminated and uncontaminated (control) samples,

although the contaminated reflects relatively less light (energy). A similar phenomena was reported by

Chakraborty et al. (2015) which was related to the higher absorbance of contaminated soils, particularly

in the NIR range (700-2500 nm). This finding is in agreement with previous studies (Okparanma and

Mouazen, 2013; Chakraborty et al., 2015; Hoerig et al., 2001).There are two distinct absorption peaks

at 1415 nm and 1914 nm which are attributed to water absorption overtones, and a third adsorption

peak at 2200 nm which is attributed to metal–hydroxyl stretching (Clark et al., 1990). Minima spectral

absorption of oil-contaminated soil samples are observed around 1712 and 1758 nm in the first

overtone region and around 2207 nm (stretch + bend) in the NIR range (Figure 3). Absorptions around

1712 and 1758 nm are attributed to C-H stretching modes of terminal CH3 and saturated CH2 groups
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linked to TPH (Workman and Weyer, 2008; Forrester et al., 2010). Similar significant wavebands

around 1712 and 1752 nm that were associated to vibrational C-H stretching modes of terminal CH3

and saturated CH2 functional chemical groups linked to TPH were reported elsewhere (Okparanma and

Mouazen, 2013). The absorption band at 2207 nm can be attributed to either amides (C=O) absorption,

or to crude oil spectral signatures (stretch + bend) and therefore linked to hydrocarbons (Mullins et al.,

1992). However, these features are practically absent in the uncontaminated reflectance spectra (Fig. 4)

which was also confirmed (Chakraborty et al., 2015). Therefore, the absorption bands of hydrocarbons

around 1712 and 1758 nm and 2207 nm band can be used to discriminate uncontaminated from

contaminated samples (Fig. 4).
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Table 2 Hydrocarbon fractions concentration (mg kg-1) and statistics across the three sites (n= 85).1

Hydrocarbon fractions
(mg/kg)

Site 1 Site 2 Site 3

N Median Minimum Maximum N Median Minimum Maximum N Median Minimum Maximum

Aliphatic

nC10-nC12 31 6.6 1.6 31 21 11 2.7 36 33 12 0.6 74

nC12-nC16 31 21 4.7 83 21 18 6.9 53 33 28 2.0 154

nC16-nC21 31 106 26 372 21 105 33 241 33 83 5.4 314

nC21-nC35 31 81 15 281 21 90 20 168 33 39 3.7 129

Aromatic

nC12-nC16 31 0.4 0.05 0.7 21 0.1 0.1 0.1 33 0.1 0.1 0.3

nC16-nC21 31 0.3 0.1 2.1 21 0.3 0.1 1.0 33 0.6 0.2 1.8

nC21-nC35 31 0.4 0.1 4.7 21 0.3 0.1 1.6 33 3.4 0.3 310

TPH SUM 31 220 49 666 21 227 65.87 485 33 188 16 619

N=number of samples2

3
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Table 3 List of limit of quantification for every study PAH in the three sites.4

PAH compounds
Number
of rings

Site 1 Site 2 Site 3

LOQ used
by

laboratories
in Nigeria

LOQ
(mg/kg)a

LOQ
(mg/kg)a

LOQ
(mg/kg)a

LOQ
(mg/kg)b

Acenaphtylene 3 0.47 0.08 0.15 0.02

Fluorene 3 0.02 0.03 0.04 0.02

Anthracene 3 0.11 0.17 0.63 0.02

Phenantrene 3 0.14 0.08 0.08 0.02

Pyrene 4 0.11 0.06 0.24 0.02

Benz[a]anthracene 4 0.06 0.07 0.12 0.02

Benzo[a]pyrene 5 0.12 0.21 0.78 0.02

Benzo[b]fluoranthrene 5 0.30 0.17 0.54 0.02

Benzo[k]fluoranthrene 5 0.36 0.26 0.77 0.02

Dibenzo[a,h]anthracene 6 0.06 0.03 0.61 0.02

Benzo[g,h,i]perylene 6 0.07 0.03 0.81 0.02
Indeno[1,2,3-
c,d]anthracene 6 0.05 0.02 1.00 0.02

LOQ (mg/kg)a and LOQ (mg/kg)b represents limit of quantification obtained for PAH from this current5

study and limit of quantification customarily used for PAH in Nigerian laboratories, respectively.6

7

The absorption band at 2207 nm can be attributed to either amides (C=O) absorption, or to crude oil8

spectral signatures (stretch + bend) and therefore linked to hydrocarbons (Mullins et al., 1992).9

However, these features are practically absent in the uncontaminated reflectance spectra (Fig. 4) which10

was also confirmed (Chakraborty et al., 2015). Therefore, the absorption bands of hydrocarbons around11

1712 and 1758 nm and 2207 nm band can be used to discriminate uncontaminated from contaminated12

samples (Fig. 4).13
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14

Figure 4. Average of raw (R) and continuum removed (CR) spectra of contaminated (85 samples) vs.15

uncontaminated soil samples (3 control samples).16

17

The loadings (regression coefficients against wavelengths) based on the first two components (Comp118

and Comp2) resulted from the cross-validated PLSR analysis for TPH are shown in Figure 5. Notably,19

the numbers and intensities of significant wavelengths have changed, compared to the raw and20

continuum removed spectra shown in Fig. 3. Significant wavebands from around 1650 to 1850 and21

from 2250 to 2350 nm can be observed, which can be associated with the 1725 nm (two-stretch) and22

2298 nm (stretch + bend) crude oil spectral signatures reported by Mullins et al. (1992). The 1758 nm23

wavelength is associated with TPH absorption in the first overtone, which is in line with observation of24

Workman and Weyer (2008) and Osborne et al. (2007) who indicated a significant wavelength for TPH25

absorption at 1752 nm. Moreover, typical spectral signatures at 1415 nm and 1914 nm were clearly26
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observed which are associated with the second and first overtones of water absorption bands around27

1450 and 1940 nm reported elsewhere (Mouazen et al., 2007).28

29

Figure 5. Regression coefficients based on the first and second components (Comp1 and Comp2)30

versus wavelengths resulted from cross-validated partial least squares regression (PLSR) analysis for31

total petroleum hydrocarbon (TPH) using visible and near infrared spectroscopy (vis-NIRS) for oil-32

contaminated soils from Niger Delta, Nigeria. Wavelengths highlighted on the plot are known features33

of TPH.34

35

3.1 Model performance for estimating TPH from vis-NIR spectra36

Table 4 and Figure 6 summarise the cross-validation and prediction models of TPH based on PLSR and37

RF analyses. In cross-validation, the RF model outperformed the PLSR and resulted in R2 of 0.85,38

RMSE of 68.43 mg kg-1, RPD of 2.61 and RPIQ = 3.96.39
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40

Figure 6. Scatter plots of laboratory measured total petroleum hydrocarbon (TPH) (mg kg-1) by SUSE-41

GC versus predicted TPH with partial least squares (PLSR) in (a) calibration and (b) prediction models,42

and random forest (c) in calibration and (d) prediction model. These models were developed using soil43

samples from three oil-contaminated sites in Niger Delta, Nigeria.44

45
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Table 4 Summary results of partial least squares regression (PLSR) and random forest (RF) models in46

calibration (cross-validation) and prediction for TPH prediction in oil-contaminated soil samples47

collected from three petroleum-contaminated sites in Niger Delta, Nigeria.48

PLSR RF

N R2 RMSEP

(mg kg-1)

RPD RPIQ LV R2 RMSEP

(mg kg-1)

RPD RPIQ ntrees

Calibration 65 0.63 107.54 1.66 2.55 8 0.85 68.43 2.61 3.96 500

Prediction 20 0.54 75.86 1.51 2.10 4 0.68 69.64 1.85 2.53 200

N= number of samples, R2 = coefficient of determination, RMSEP = root mean square error of49

prediction, RPD = residual prediction deviation, LV = number of latent variables, ‘ntrees’ = number of50

trees, and RPIQ = ratio of performance to interquartile range.51

52

The performance of PLSR is the lowest with R2 of 0.63, RMSE of 107.54 mg kg-1, RPD of 1.66 and53

RPIQ of 2.55. A similar trend to that of the cross-validation can be observed for the prediction set with54

both RF (R2 = 0.68, RMSE = 69.64 mgkg-1, RPD = 1.85 and RPIQ = 2.53) and PLSR (R2 = 0.54,55

RMSE = 78.86 mg kg-1, RPD = 1.51 and RPIQ = 2.10).56

Our results for RF prediction are better than those reported by Chakraborty et al. (2015) using 10857

contaminated soil samples (West Texas, USA) subjected to RF analysis alone (R2 = 0.53, RMSE = 95.658

mgkg-1, RPD = 1.48 and RPIQ = 1.91) and RF combined with penalized spline regression (PSR) (R2 =59

0.78, RMSE= 0.53 mgkg-1, RPD = 2.19 and RPIQ = 0.75). Similarly, our RF results are better than60

those reported by Hoerig et al. (2001). For PLSR, Chakraborty et al. (2010 and 2015) reported slightly61

higher RPD values of 1.69 and 1.7, respectively, for in field-moist soils using PLSR. This difference62

with our results can be attributed to the combination of spectral treatment that represents an important63

phase in multivariate calibration and enhances the model performance (Nawar et al., 2016;64

Buddenbaum and Steffens, 2012; Mouazen et al., 2010). Moreover, Stenberg et al. (2010) and Wang et65

al. (2010) reported that the model performance depends to a large extent on the variability encountered66

in the dataset, including soil types, which was the case in our study (16 - 666 mg kg-1), while this was67

not the case in the two studies conducted by Chakraborty et al. (2010 and 2015) where the original68
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TPH values were widely and non-normally distributed (44 to 48 mg kg-1 and 1.22-3.74×109 mg kg-1,69

respectively). Also, the high variation of TOC (1.1-12.7%) in our study may increase the performance70

for estimating the TPH (Table 1). It is worth to note that the lower prediction performance observed in71

this study for PLSR compared to RF might be attributed to the non-linear behaviour of the spectral72

response of the data set. This feature was not accounted for by the linear PLSR model (Nawar and73

Mouazen, 2017). In contrast, the RF was capable to handle well the nonlinearity of the dataset of this74

study. According to RPD classification suggested by Viscarra Rossel et al. (2006), good predictions for75

TPH are obtained using RF (RPD = 1.85), whereas only fair prediction performance is obtained with76

PLSR (RPD = 1.51). These results are consistent with our study and previous studies (Okparanma et al.77

2014).78

79

4. Conclusions80

In this study, we compared the performance of random forest (RF) and partial least squares regression81

(PLSR) modelling methods to predict total petroleum hydrocarbon (TPH) in fresh soil samples82

collected from three oil-contaminated sites in Niger Delta, Nigeria. Much better prediction results were83

achieved by RF with coefficient of determination (R2), root mean square error of prediction (RMSEP)84

and ratio of prediction deviation (RPD) of 0.68 and 69.64 mg kg-1, and 1.85, respectively, compared to85

PLSR with 0.54 and 75.86 mg kg-1, and 1.51 values, respectively. The R2, RPD, and RMSEP values86

obtained herein by RF models confirm its suitability as ‘a good model prediction’ for the estimation of87

soil properties. The better performance of RF may be attributed to the fact that RF had the advantage of88

handling the different sources of non-linearity that apparently exist in the studied dataset. There is a89

strong indication that vis-NIR spectroscopy signal acquisition followed by RF algorithm can be trusted90

for real application in hydrocarbon analysis in petroleum-contaminated sites where limited data are91

available. However we recommend that future work should compare other non-linear calibration92
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methods including artificial neural network, support vector machine, and PSR, among others, to select93

the best algorithm for the prediction of soil petroleum hydrocarbons.94
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