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Summary  

Recent developments and applications of rapid measurement tools (RMT) such as visible 

near-infrared (vis–NR) spectroscopy confirmed that these technologies can provide ‘fit 

for purpose’ and cost effective data for risk assessment and management of oil-

contaminated sites. While vis–NIR spectroscopy has been used more frequently to predict 

total petroleum hydrocarbon (TPH), it has had limited use for polycyclic aromatic 

hydrocarbons? (PAHs) and there have been none for alkanes. In the present study, the 

potential of vis–NIR spectroscopy (350–2500 nm) to measure PAHs and alkanes in 85 

fresh (wet, unprocessed) oil contaminated soil samples collected from three sites in the 

Niger Delta, Nigeria was evaluated. The vis–NIR signal and laboratory measured alkanes 

and PAHs with sequential ultrasonic solvent extraction followed by gas chromatography-

mass spectrometry (GC-MS) were then used to develop calibration models using partial 

least squares regression (PLSR) and random forest (RF) modelling tools. Prior to model 

development, the pre-processed spectra were divided into calibration (75%) and 

prediction (25%) sets. Results showed that the prediction performance of RF calibration 

models for both alkanes (a coefficient of determination [R
2
] of 0.58, a root mean square 

error of prediction (RMSEP) of 53.95 mg kg
-1

 and a residual prediction deviation (RPD) 

of 1.59) and PAHs (R
2
 = 0.71, RMSEP = 0.99 mg kg

-1
 and RPD = 1.99) outperformed 

PLSR (R
2
 = 0.36, RMSEP = 66.66 mg kg

-1
 and RPD = 1.29, and R

2
 = 0.56, RMSEP = 

1.21 mg kg
-1

 and RPD = 1.55, respectively). The RF modelling approach accounted for 

nonlinearity of the soil spectral responses and therefore resulted in considerably greater 

prediction accuracy than the linear PLSR. Adoption of vis–NIR spectroscopy coupled 

with RF is recommended for rapid and cost effective assessment of PAHs and alkanes in 
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contaminated soil. 

Keywords. Petroleum hydrocarbons, vis–NIR spectroscopy, chemometrics, site 

investigation. 

 

Highlights 

• We evaluated the potential of vis–NIR to estimate alkanes and PAHs in oil-

contaminated soil.  

• The prediction performance of RF models was better than PLSR models for both 

alkanes and PAHs.  

• The spectral response to alkanes and PAHs in soil considerable non-linearity.  

• Results suggest that RF-vis–NIR is a promising tool for rapid in situ assessment of soil 

alkanes and PAHs. 

 

Introduction  

Petroleum hydrocarbon (PHC) contamination in soil is an important worldwide issue and 

has attracted serious concerns about the risks to human health and ecosystem health. The 

major sources of PHC pollution in the soil environment are oil spills from production, 

storage and distribution of petroleum products. The PHCs encompass hundreds of various 

aromatic and aliphatic compounds as well as traces of heterocyclic compounds (nitrogen, 
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hydrogen, sulphur), which are well-known environmental contaminants (Coulon et al., 

2010). The determination of PHCs in contaminated environmental matrices is a challenge 

to standardize because of the requirements of different jurisdictions. However, most 

modern risk assessment methodologies for contaminated sites dictate a risk-based 

approach and, hence, determination and quantification of particular species of 

contaminants and fractions are required (Ferguson, 1999). With millions of contaminated 

locations globally (Horta et al., 2015), there is a need for efficient, cost effective, portable 

and rapid tools for measurement and real-time analysis of PHCs in soil.  

Over the last two decades, laboratory techniques have been developed for analysing soil 

contamination in the laboratory, which are time consuming and expensive (Okparanma & 

Mouazen, 2013; Chakraborty et al., 2015). Furthermore, laboratory techniques require 

prior sample analysis, extraction and sometimes required cleaning the contaminants non-

volatile compounds from the GC injection ports and columns (Forrester et al., 2013). 

Among the laboratory techniques, gas chromatography with flame ionization detector 

(GC-FID) and gas chromatography-mass spectrometry (GC-MS) are the most common 

choices for the determination of PHCs in soil using extraction solvents such as 

dichloromethane or hexane, which pose some human health and environmental risk 

hazard (Okparanma & Mouazen, 2012). To analyse petroleum-contaminated soils 

rapidly, optical sensors are recommended (Okparanma et al., 2014a). Several studies 

have assessed the potential of optical techniques for the rapid estimation of PHC 

concentration in soil (e.g. Bray et al., 2009; Okparanma & Mouazen, 2012, 2013; 

Okparanma et al., 2014a, 2014b; Wartini et al., 2017). For example, Bray et al. (2009) 

used the logistic regression method to predict total polycyclic aromatic hydrocarbon 
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(PAH) and benzo[a]pyrene with visible and near infrared (vis–NIR) spectroscopy, and 

achieved a good accuracy (90%). Okparanma & Mouazen (2012) used a vis–NIR sensor 

(350-2500 nm), coupled with partial least squares regression (PLSR) to quantify PAH in 

diesel-contaminated soil. Their results were good with a root mean square error of 

prediction (RMSEP) of 0.20 mg kg
-1

, ratio of prediction deviation (RPD) of 2.75 and a 

coefficient of determination (R
2
) of 0.89. In a later study, Okparanma & Mouazen (2013) 

assessed the applicability of the same vis–NIR sensor to predict phenanthrene in soil 

based on PLSR and reported R
2 

values of 0.75 and 0.83, RPD values of 2.0 and 2.32, and 

RMSEP values of 0.21 and 0.25 mg kg
-1

 for validation and calibration, respectively. In 

another study with the same vis–NIR sensor coupled with PLSR, Okparanma et al. 

(2014a) recorded promising results for the measurement of PAH in the Niger delta, 

Nigeria with R
2
, RPD, and RMSE values of 0.77 and 0.89, 1.86, and 3.12, and 1.16 and 

1.95 mg kg
-1

 for validation and calibration, respectively. In monitoring hydrocarbon 

contamination, Okparanma et al. (2014b) investigated the applicability of vis–NIR 

coupled with PLSR for mapping PAH and the total toxicity equivalent concentration 

(TTEC) of PAH mixtures at different petroleum-discharge sites in the Niger Delta. They 

found that there were no significant (P >0.05) discrepancies between the soil maps PAH 

and TTECs obtained from vis –NIR-based prediction data. Wartini et al. (2017) predicted 

total recoverable hydrocarbon (TRH) concentration in 72 field contaminated soils with a 

coefficient of determination of cross-validation (R
2
cv) of 0.75. More studies on the use of 

vis–NIR spectroscopy for the prediction of TPH and PAH in soil are described in a recent 

review by Douglas et al. (2017); however, the review included no studies on the 

predictions of alkanes. Although the prediction of TPH and PAH based on spectroscopy 
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and multivariate techniques has increased markedly, to the best of our knowledge there is 

nothing in the literature on the prediction of aliphatic fractions and alkanes (nC10-35) in 

oil-contaminated sites.  

The aim of this study was to report on the performance of a vis–NIR spectrometer for the 

detection of alkanes and PAH in oil-contaminated soil in the Niger Delta, Nigeria. The 

prediction performance of the linear PLSR model was compared with a nonlinear random 

forest (RF) model, to determine the best accuracy that can be achieved with this portable 

technology. 

Materials and methods 

The study area and sampling  

The study area is in the Niger Delta, Nigeria (Figure 1). The studied fields are located in 

Bayelsa and Rivers State (Ikarama 6.4519
o
 and 6.4527

o
E, 5.1538

o
 and 5.1542

o
N; 

Kalabar: 6.4502
o 

and 6.4511
o
E, 5.1369 and 5.1357

o
N; Joinkrama: 6.1213 and 6.1224

o
E, 

4.9213
o
 and 4.9314

o
 N). It is characterized by a tropical rain forest climate with two 

seasons: the rainy season lasts for about seven months between April and October with an 

overriding dry period in August (known as the August break); the dry season lasts for 

about four months, between November and March. The temperature varies between 25 

and 35 
○
C in August. The regional geology of the Niger Delta is relatively simple; it 

consists of the Benin, Agbada (the kitchen of kerogen) and Akata formations, overlain by 

various types of Quaternary deposits (Wright et al., 1985). Soils of the area studied were 

classified according to the United State Department of Agriculture (USDA) (Soil Survey 

Staff, 2010) soil taxonomy into two orders, i.e. Inceptisols and Entisols, which include 
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four subgroups of Typic Dystrudepts, Aeric Endoaquepts, Typic Udipsammerts and Typic 

Psammaqnents (Udoh et al., 2013). Soil texture fractions were determined by the 

international pipette method (Piper, 1950); the results indicated different soil textures for 

the three sites. According to the USDA textural classification system (Soil Survey Staff, 

1999), textures were clay and silty clay loam at the Ikarama site, silt loam at the Kalabar 

site, and clay loam and sandy clay loam for the Joinkrama site. A total of eighty five (n = 

85) petroleum-contaminated soil samples were collected from the top 0–15 cm of three 

sites (Ikarama 31 samples, Kalabar 21 samples and Joinkrama 33 samples) with a shovel. 

Each sample taken from a sampling point was homogenized on-site with a hand trowel. 

We adopted a direct sampling approach to cover as much of the visible hot-spots in the 

contaminated sites. Soil samples were kept in air-tight centrifuge tubes and stored in cool 

boxes with ice blocks to avoid hydrocarbon volatilization and to preserve field-moist 

status until shipment to Cranfield University for further analysis.  

Vis–NIR spectra acquisition and pre-processing  

Prior to vis–NIR scanning of the soil in the laboratory, each soil sample was further 

homogenized using a spatula. To obtain optimal diffuse reflection, and therefore, a good 

signal-to-noise ratio, all plant and pebble particles were removed manually, and the 

surface was smoothed gently with a spatula before scanning. An ASD LabSpec2500® 

Vis–NIR spectrophotometer (Analytical Spectral Devices, Inc., Boulder, Colorado USA) 

with a spectral range of 350 to 2500 nm was used for spectral data acquisition in the 

laboratory. The equipment was started and allowed to warm up for at least 30 minutes 

and calibrated with a 100% Teflon white reference before soil spectral measurement, 

which was repeated at 30-minute intervals. The white reference measurement aimed to 
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avoid, and possibly remove dark current and effects from variation in ambient 

temperature and humidity as reported by Chakraborty et al. (2010). From each of the 

eighty five homogenized soil samples, three subsamples were packed into plastic Petri 

dishes for the acquisition of vis–NIR spectra. The vis–NIR spectra of all the samples 

were recorded with the spectrometer by placing the sample in direct contact with a high 

intensity probe with a built-in quartz-halogen bulb of 3000 
○
K, enclosing a 20° angle with 

a detection fibre. The three replicates of each sample were scanned at three different 

places on the sample, and an average spectrum was obtained. The raw average spectra 

were subjected to pre-processing including successively, noise reduction, maximum 

normalization, first derivative and smoothing using the prospector-R package (Stevens 

and Ramirez, 2014). First, the spectral range outside 400–2345 nm was excised to 

remove the noise at both edges. Then, a moving average with five successive 

wavelengths was used to reduce noise. Maximum normalization followed, which is 

typically used to place all data at approximately the same scale. Spectra were then 

subjected first to Gap-segment derivative (gapDer) algorithms (Norris, 2001) with a 

second-order polynomial approximation. Finally, Savitzky–Golay smoothing was carried 

out to remove noise from the spectra and to decrease the detrimental effect on the signal-

to-noise ratio that conventional finite-difference derivatives would have.  

Hydrocarbon analysis  

Hydrocarbon extraction was performed as described by Risdon et al. (2008) with some 

modifications. Total extractable and recoverable petroleum hydrocarbons (TERPH), 

aliphatic and aromatic fractions were identified and quantified using a GC-MS (Agilent 

5973N, Santa Clara, California) system operated at 70 eV in positive ion mode. The GC 
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was fitted with a Restek RTX–5MS capillary column (30-m long, 0.25-mm internal 

diameter and 0.25-µm coating). Splitless injection with a sample volume of 1 µl was 

applied. The oven temperature was increased from 60 °C to 220 °C at 20 °C minute
-1

, 

then to 310 °C at 6 ºC minute
-1

 and held at this temperature for 15 minutes. The mass 

spectrometer was operated using the full scan mode (range m z
-1

 50-500) for quantitative 

analysis of target alkanes and PAHs. For each compound, quantification was performed 

by integrating the peak at specific m z
-1

. External multilevel calibrations were carried out 

for both oil fractions, with values ranging from 0.5 to 2500 µg ml
-1

 for alkanes? and from 

1 to 5 µg ml
-1

 PAHs. Internal standards for the alkanes were nonadecane-d40, triacontane-

d62 and napthalene d8, phenanthracene-d10, chrysene-d12 and perylene d12 (Sigma Aldrich, 

Gillingham, UK). For quality control, a 500 µg ml
-1

 standard diesel and mineral oil were 

analysed every 20 samples. In addition, duplicate soil control and reference materials 

were systematically used. The soil control was treated following the same procedure for 

samples without adding soil samples. The reference material was an uncontaminated soil 

of known characteristics, and was spiked with a standard diesel and mineral oil at a 

concentration equivalent to 16 000 mg kg
-1

. 

Model development  

The pre-processed spectra and the laboratory (GC-MS) measured chemical data for 

alkanes and PAHs were used to develop calibration models. In this study we compared 

the prediction performance of two modelling techniques, namely PLSR and RF 

regression. Before the analyses, outliers were detected by box plot (Figure 2) and 

removed (5 and 2 samples of PAHs and alkanes were removed, respectively), after which 

the dataset was divided into calibration and prediction sets (58 and 23 for PAHs, and 65 
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and 18 for alkanes, respectively) using the Kennard–Stone algorithm (Kennard & Stone, 

1969). The resulting calibration models developed with the calibration set were validated 

using the prediction samples.  

It is well known that PLSR is the most commonly used multivariate regression technique 

available in standard statistical and chemometrics software. It is a bilinear modelling 

method where information in the original x data is projected on to a small number of 

underlying (‘latent’) variables called PLSR components. The y data are actively used in 

estimating the latent variables to ensure that the first components are those that are most 

relevant for predicting the y variables. Interpretation of the relation between the x data 

and y data is then simplified because this relation is concentrated on the smallest possible 

number of components (latent variables). More detailed information about the PLSR can 

be found in (Martens and Naes, 1989). In this study, alkanes and PAHs represented y, 

whereas the dependent variables (wavelengths) represented x and were used as regression 

generators for the independent variables (Mouazen et al., 2006). In this study, we used 

PLSR analysis with leave-one-out cross validation (LOOCV) to develop calibration 

models for alkanes and PAHs with the pls-R package (R Core Team, 2013), in order to 

annul the possible effect of under-fitting or over-fitting data (Efron & Tibshirani, 1993). 

The maximum number of components used in the PLSR was five for alkanes and six for 

PAHs.  

Ensemble learning like RF well known as a method for classification and regression, 

which generates many classifiers and aggregates their results (Breiman, 2001). Tree 

diversity guarantees stability of the RF model, which is achieved in two ways: (i) a 

random subset of predictor variables is chosen to ‘grow’ each tree and (ii) each tree is 

file://///cns.cranfield.ac.uk/filestore/users/SWEE/e102063/POSTDOC_Cranfield/PhD%20students/DOUGLAS%20REWARD/Papers_Chapters_Douglas/04_Chapter_Douglas_ALK%20&%20PAH_EJSS/ALK%20&%20PAH_Rev1_JESS_Douglas/Kennard
https://en.wikipedia.org/wiki/Ensemble_learning
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based on a different random data subset, created by bootstrapping, i.e. sampling with 

replacement (Efron, 1979). Instead of testing the performance of all p variables, a 

modified algorithm is used for splitting at each node. The size of the subset of variables 

used to grow each tree (mtry) has to be selected by the user. Each tree grows until it 

reaches a predefined minimum number of nodes (nodesize). The default mtry value is the 

square root of the total number of variables (Abdel-Rahman et al., 2014). Therefore, 

ntrees needs to be set sufficiently high. Consequently, RFs do not over-fit when more 

trees are added, but produce a limited generalization error (Peters et al., 2007). The same 

datasets used in PLSR were used for RF, and all wavelengths were included in the RF 

analysis. The optimal number of trees to be grown (ntree), number of predictor variables 

used to split the nodes at each partitioning (mtry) and the minimum size of the leaf 

(nodesize) were set to 500, two and three, respectively. These parameters were 

determined by the tune RF function implemented in the R software package, named 

Random Forest Version 4.6-12 (Liaw and Wiener, 2015),
 
based on Breiman and Cutler's 

Fortran code (Breiman, 2001).  

Model evaluation 

The accuracy of the calibration models for PLSR and RF analyses were evaluated with: 

(i) the coefficient of determination of prediction R
2
, (ii) RMSEP and (iii) RPD, which is a 

ratio of standard deviation (SD) to RMSEP. In this study, we adopted the proposed 

classification system for RPD values of Viscarra Rossel et al. (2006), which divides the 

accuracy of modelling into six classes: excellent (RPD > 2.5), very good (RPD = 2.5–

2.0), good (RPD = 2.0–1.8), fair (RPD = 1.8–1.4), poor (RPD = 1.4–1.0), and very poor 

model (RPD < 1.0). 
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Results and discussion 

Laboratory wet analysis 

The distribution and concentrations of the aliphatic fractions and individual PAH across 

the three sites are summarized in Table 1. The three study sites followed the same trend: 

nC10–nC12 had the smallest values at all the sites, whereas nC16–nC21 dominated at all 

sites. The distribution of hydrocarbons confirms? that the hydrocarbon source at the three 

sites is weathered (degraded) (Brassington et al., 2010). More particularly, the 

concentration of aliphatic compounds at Site 1 (767.0 mg kg
-1

) was 1.5 times greater than 

at Site 2 (498.1 mg kg
-1

) and 1.1 times greater than Site 3 (671.2 mg kg
-1

) (Table 1). 

Conversely, the concentration of aromatic compounds at Site 3 (321.8 mg kg
-1

) was 97.23 

times greater than at Site 2 (3.31 mg kg
-1

) and 39.98 times greater than Site 1 (8.05 mg 

kg
-1

) (Table 1). 

Among the three sites studied, Joinkrama and Kalabar were the most and least 

contaminated sites with aliphatic hydrocarbons, respectively. The only exception was that 

the maximum concentration of the nC10–nC12 in Kalabar was larger than at its counterpart 

in Ikarama. The concentrations of 3- and 4-ring PAHs ranged from 0.002 to 0.782 mg kg
-

1
, 0.003 to 0.514 mg kg

-1
 and 0.004 to 309.325 mg kg

-1
 at Sites 1, 2 and 3, respectively. 

The concentration of 5- to 6- ring PAHs ranged from 0.001 to 2.246 mg kg
-1

, 0.000 to 

0.016 mg kg
-1

 and 0.004 to 2.527 mg kg
-1

 at Sites 1, 2 and 3, respectively. The relatively 

large concentration of Benz[a]anthracene (309.3 mg kg
-1

) at Site 3 cannot be explained 

because its degradation has not been documented elsewhere. Overall, Site 3 appeared to 

be the most contaminated compared to Sites 1 or 2. 
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A statistical summary of the concentrations of alkanes and PAHs determined by GC-MS, 

and used for the development of both PLSR and RF models is provided in Table 2 and 

Figure 2. The concentrations of alkanes varied between small to medium amounts with 

mean and maximum values of 151.6 and 551.2 mg kg
-1

, respectively. There were only 

two samples with values above 512 mg kg
-1

;
 
both were outliers (Figure 2 a). The 

concentrations of PAHs ranged from 0.52 to 312.28 mg kg
-1

, with a mean value of 9.11 

mg kg
-1

. Five outliers were detected (Figure 2 b) and were removed before modelling 

(Figure. 2 c). 

Analysis of regression coefficients  

Figure 3 depicts the regression coefficients plotted against wavelength; the coefficients 

resulted from the cross-validated PLSR analysis for alkanes and PAHs. Plots of the 

regression coefficients illustrate important wavelengths or bands that associate with 

properties or compounds to be predicted, in this case alkanes and PAHs. Figure 3(a) 

shows two absorption bands in the alkanes plot around 1716 and 2306 nm. The 

absorption band around 1716 nm in the first overtone region is characteristic of TPH. The 

absorption feature around 2306 nm is attributed to the long-chain C–H+C–C stretch 

combinations, which is related to –CH2 aliphatic groups. This accords with the range 

reported by Wartini et al. (2017) for petroleum-contaminated soil (2300-2340 nm). For 

PAHs, two distinct spectral absorption peaks can be identified around 1688 and 1736 nm 

in the first overtone region of the NIR spectral range (Figure 3b). The absorption around 

1688 nm is attributed to C–H stretching modes of ArCH associated with PAHs, whereas 

the absorption around 1736 nm is attributed to C–H stretching modes of terminal CH3 

and saturated CH2 chemical group characteristic of TPH. The absorption bands around 
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1400 and 1900 nm in Figure. 3(a, b) are attributed to O–H stretching bands in the second 

and first overtone regions, respectively. The TPH absorption bands identified in the 

regression coefficients plots accord with the results reported elsewhere (Wartini et al., 

2017; Okparanma et al., 2014a), whereas the PAHs absorption bands are similar to those 

of Okparanma et al. (2014a) and Workman and Weyer (2008). The absorption bands 

around 1394, 1873 and 1881 nm identified in this study compare well with the results of 

Stenberg et al. (2010) and Whalley and Stafford (1992), and they are associated with O–

H stretching modes of water in the second (1394 nm) and first overtone (1873 and 1881 

nm) regions, respectively. However, the largest absorption bands were those associated 

with water at the first and second absorption overtones of O–H, whereas those associated 

with PAHs were significantly smaller.  

Figure 4 shows an average raw vis–NIR spectrum of oil-contaminated soils spectra 

collected from three sits, where smaller absorption features associated with hydrocarbons 

(1712, 1758, 2207 and 2302 nm) and larger features associated with water (1415 and 

1914 nm) were identified. Interestingly, these wavelengths agree with spectral features of 

hydrocarbons and water observed in plots of the regression coefficients (Figure. 3). The 

wavelengths 1712 nm and 1758 nm are close to those reported by Okparanma and 

Mouazen (2013) (1712 and 1759 nm), Okparanma et al. (2014a) (1712 and 1752 nm) and 

Douglas et al. (2018) (1712 and 1758 nm) for hydrocarbon contaminated soils. The 

wavelength of 2207 nm is near to those reported by Chakraborty et al. (2015) and 

Forrester et al. (2013) (2220 nm), whereas the wavelength of 2302 nm is close to 2298, 

reported for hydrocarbon contamination in soils by Mullins et al. (1992). The wavelength 

of 2302 nm could also be attributed to soil minerals (Viscarra Rossel et al., 2006). 



15 

 

Prediction performance for alkanes and PAHs 

The results of prediction performance of PLSR and RF for alkanes and PAHs are listed in 

Table 3 and shown in Figures. 5 and 6. The results show clearly that RF outperformed 

PLSR in both the cross-validation and prediction. For alkanes, RF cross-validation results 

(R
2 

= 0.85, RMSEP = 55.71 mg kg
-1

 and RPD = 2.58) are typically better than the 

prediction results (R
2 

= 0.58, RMSEP = 53.59 mg kg
-1

, and RPD = 1.59). It is clear that 

PLSR performed poorly and resulted in R
2 

of 0.49, RMSEP of 101.7 mg kg
-1

 and RPD of 

1.41 in cross-validation, and of 0.36, 66.66 mg kg
-1

 and 1.29, respectively, in prediction 

(Table 3). With the RPD classification system of Viscarra Rossel et al. (2006) to evaluate 

prediction performance of the models, suggested that the predictions for alkanes based on 

an RF were between fair to excellent (RPD = 1.59–2.58), whereas the prediction 

performance of PLSR models was classified as poor to fair (RPD = 1.29–1.41). There is 

no other study yet on the use of vis–NIR spectroscopy to predict alkanes in soil, 

therefore, we could make no comparison of our results with independent literature. 

However, the prediction performance here suggests that there more research is needed to 

improve the model outputs, and to understand why the prediction was not in the good to 

excellent categories. One reason might be the limited number of samples used in the 

current research (85 samples for calibration and validation). Kuang and Mouazen (2013) 

showed that the prediction accuracy for soil total nitrogen and total carbon could be 

improved with the increase in number of samples that added (spiked) into a general 

calibration set. 

Figure 6 shows scatter plots of measured against predicted PAHs values in cross-

validation and prediction. Again, RF produced better results than PLSR. Unlike alkanes, 
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the prediction performance of PAHs with RF indicated excellent performance in cross-

validation (R
2 

= 0.89, RMSEP = 1.02 mg kg
-1

 and RPD = 2.99), and good performance in 

prediction (R
2 

= 0.71, RMSEP = 0.99 mg kg
-1

 and RPD = 1.99). Results also showed that 

the PLSR model performed better for PAHs than for alkanes, with good performance in 

cross-validation (R
2 

= 0.76, RMSEP = 0.81 mg kg
-1

 and RPD = 2.07) and fair 

performance in prediction (R
2 

= 0.56, RMSEP =1.21 mg kg
-1

, and RPD = 1.55) (Table 3 

and Figure. 6). The better performance of RF compared to PLSR can be attributed to the 

fact that the RF modelling technique typically yields better results when the relation 

between reflectance and concentration is a nonlinear (typical in soils) (Nawar et al., 2016; 

Douglas et al., 2018), whereas the PLSR model fits only linear relations (Nawar et al., 

2016). Results obtained with PLSR are not as good as those already reported in the 

literature. Okparanma et al. (2014a) reported an RPD range of 1.86-3.12 using soil 

samples from the Niger delta, whereas Okparanma and Mouazen (2013) reported a range 

of 1.67 - 3.20. An RPD value of 2.75 was reported by Okparanma and Mouazen (2012). 

The fair to good performance observed in this study with PLSR might also relate to the 

small number of samples used in the present study, compared to those reported 

elsewhere. 

Conclusions  

We have shown the potential application of visible and near infrared (vis-NIR) 

spectroscopy and chemometrics for the prediction of alkanes and polycyclic aromatic 

hydrocarbons (PAHs) in oil-contaminated soil samples collected from three contaminated 

sites in the Niger Delta, Nigeria. Our results revealed that prediction performance 

depended on the modelling techniques used, and that RF outperformed PLSR for the 
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prediction of both properties in both cross-validation and prediction. The RF models’ 

prediction performance of alkanes and PAHs was classified as fair and good, 

respectively, whereas PLSR models’ performance was poor for alkanes (and only fair for 

PAHs. The better performance of RF was its ability to deal with non-linearity in the 

dataset used in this study. Nevertheless, the small number of soil samples in this study 

might have affected the model performance at both the calibration and prediction stages. 

This was particularly so for RF at the prediction stage, wheeras the model provided much 

better results in cross-validation than in prediction. In contrast, the PLSR model 

performance slightly only deteriorated between cross-validation and prediction. Further 

work is being undertaken to improve the prediction accuracy of vis–NIR spectroscopy 

coupled with the RF nonlinear modelling approach by using the existing Nigerian 

contaminated soil spectral library and spiking technique. 
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Figure captions 

Figure 1 Soil sampling locations for the three contaminated sites in the Niger Delta 

(Bayelsa and Rivers State), Nigeria (After: Douglas et al., 2018). 

Figure 2 Histograms and box-plots of concentrations for (a) alkanes with outliers, (b) 

polycyclic aromatic hydrocarbons (PAHs) with outliers and (c) PAHs without outliers, of 

the eighty five soil samples from the Niger Delta, Nigeria. 

Figure 3 Plots of regression coefficient from partial least squares regression (PLSR) 

analysis for (a) alkanes and (b) polycyclic aromatic hydrocarbons (PAHs), based on 

visible and near infrared (vis–NIR) spectra of oil-contaminated soil samples from three 

sites in the Niger Delta, Nigeria. Wavelengths highlighted on the plot are the potential 

features of PAHs and alkanes. 

Figure 4 Average raw visible and near infrared (vis–NIR) spectrum of oil-contaminated 

soil spectra from three crude oil spill sites in the Niger Delta region of Nigeria. 

Wavelengths of 1712, 1758, 2207 and 2302 nm are associated with hydrocarbons, 

whereas 1415 and 1914 nm are absorption features of water in the second and first 

overtones, respectively. 

Figure 5 Values of alkanes measured with gas chromatography mass-spectrometry (GC-

MS) plotted against predicted concentrations from visible and near infrared (vis–NIR) 

spectroscopy based on partial least squares regression (PLSR) in (a) cross-validation and 

(b) prediction, and random forest (RF) in (c) cross-validation and (d) prediction for 

samples from the Niger Delta, Nigeria.  

Figure 6 Scatter plots of the measured polycyclic aromatic hydrocarbons (PAHs) using 
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gas chromatography mass-spectrometry (GC-MS) versus visible and near infrared (vis-

NIR) spectroscopy predicted concentrations based on (A) partial least squares regression 

(PLSR) in (a) cross-validation and (b) prediction, and (B) random forest (RF) method in 

(c) cross-validation and (d) prediction for samples from the Niger Delta, Nigeria. 
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Table 1 Statistical summary of the concentrations of alkanes and polycyclic aromatic 

hydrocarbons (PAHs) for the three contaminated sites from the Niger Delta, Nigeria.  

compound  
LOQ/mg 

kg
-1

 

Ikarama Kalabar Joinkrama 

N Med.  Min. Max. N Med.  Min. Max. N Med.  Min. Max. 

   mg kg
-1

  mg kg
-1

  mg kg
-1

 

nC10-nC12 Ali 0.02 31 6.59 1.52 31.46 21 11.34 2.65 35.52 33 12.45 0.59 73.77 

nC12-nC16 Ali 0.02 31 21.42 4.70 83.19 21 18.42 6.89 52.84 33 27.59 1.92 154.14 

nC16-nC21 Ali 0.02 31 106.4 26.26 371.53 21 105.49 32.76 241.39 33 83.23 5.38 314.32 

nC21-nC35 Ali 0.02 31 80.52 15.07 280.78 21 89.73 20.10 168.38 33 39.00 3.65 128.97 

Alkanes   214.97 47.55 766.96  224.98 62.4 498.13  162.27 11.54 671.20 

Acenaphtylene 0.02 31 0.375 0.054 0.691 21 0.321 0.083 0.514 33 0.132 0.045 0.319 

Fluorene 0.02 31 0.025 0.011 0.122 21 0.019 0.005 0.041 33 0.037 0.004 0.085 

Anthracene 0.02 31 0.111 0.034 0.397 21 0.111 0.023 0.330 33 0.286 0.088 0.982 

Phenantrene 0.02 31 0.124 0.038 1.121 21 0.100 0.021 0.364 33 0.104 0.013 0.859 

Pyrene 0.02 31 0.059 0.014 0.545 21 0.093 0.030 0.262 33 0.120 0.019 1.070 

Benzo[a]pyrene 0.02 31 0.049 0.005 0.948 21 0.068 0.016 0.495 33 0.445 0.024 1.940 

Benzo[b] 

Fluoranthrene 
0.02 31 0.099 0.006 0.957 21 0.062 0.016 0.420 33 0.460 0.037 2.527 

Benzo[k]- 

fluoranthrene 
0.02 31 0.028 0.006 2.246 21 0.030 0.004 0.516 33 0.695 0.004 2.150 

Benz[a]anthrace

ne 
0.02 31 0.027 0.002 0.782 21 0.031 0.003 0.170 33 0.052 0.005 309.325 

Dibenzo[a,h] 

anthracene 
0.02 31 0.011 0.002 0.073 21 0.014 0.001 0.067 33 0.406 0.009 0.765 

Benzo[g,h,i] 

perylene 
0.02 31 0.007 0.001 0.076 21 0.010 0.000 0.066 33 0.323 0.008 0.805 

Indeno [1,2,3-

c,d] 

anthracene. 

0.02 31 0.017 0.002 0.094 21 0.021 0.004 0.065 33 0.340 0.015 0.996 

PAHs   0.932 0.175 8.052  0.88 0.206 3.310  3.399 0.271 321.823 

TREPH    215.90 47.73 775.01  225.86 62.61 501.44  165.67 11.81 993.02 

Med., median; Min., minimum; Max., maximum; LOQ, limit of quantification, defined as 

the lowest concentration at which an analyte can be reliably detected (Mitra, 2003); 

TREPH (Alkanes + PAHs), total recoverable petroleum hydrocarbons; N, number of 

samples; Ali, aliphatic; Ikarama and Kalabar, soil sampling sites 1 and 2, respectively 

(Yenagoa Local Government Area Bayelsa State); Joinkrama, soil sampling site 3 

(Ahoada East Local Government Area Rivers State). 
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Table 2 Statistical summary of concentrations of alkanes and polycyclic aromatic 

hydrocarbons (PAHs) for the soil samples measured with gas chromatography-mass 

spectrometry (GC-MS). Soil samples were collected from three petroleum-contaminated 

sites in the Niger Delta, Nigeria. 

 

N Min. Mean Median 1st Qu. 3rd Qu. Max. St. dev 

Alkanes/mg kg
-1

 85 9.9 187.24 151.75 84.55 259.25 551.22 133.13 

PAHs/ mg kg
-1

 85 0.520 9.11 1.39 0.89 4.00 312.28 40.20 

1st Qu., first quartile; 3rd Qu., third quartile; St. dev, standard deviation.   
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Table 3 Prediction performance of partial least squares regression (PLSR) and 

random forest (RF) models for alkanes and polycyclic aromatic hydrocarbons 

(PAHs) in oil-contaminated soils from three sites (Ikarama, Kalabar, and Joinkrama) 

in the Niger Delta, Nigeria, developed using visible and near-infrared (vis–NIR) 

spectroscopy. 

 

 

  

PLSR 
  

RF 
  

Compound     
Model 

N R
2
 RMSEP  

/mg kg
-1

 

RPD LV R
2
 RMSEP 

 /mg kg
-1

 

RPD ntrees 

Alkanes Calibration 65 0.49 101.71 1.41 6 0.85 55.71 2.58 500 

 Prediction 18 0.36 66.66 1.29 4 0.58 53.95 1.59 200 

PAHs Calibration 58 0.76 0.81 2.07 6 0.89 1.02 2.99 500 

 Prediction 23 0.56 1.21 1.55 4 0.71 0.99 1.99 200 

R
2
, coefficient of determination; RMSEP, is root mean square error of prediction; RPD, 

residual prediction deviation; LV, latent variable. 
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Figure 1 Soil sampling locations for the three contaminated sites in the Niger Delta 

(Bayelsa and Rivers State), Nigeria (After: Douglas et al., 2018). 
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Figure 2 Histograms and box-plots of concentrations for (a) alkanes with outliers, (b) 

polycyclic aromatic hydrocarbons (PAHs) with outliers, and (c) PAHs without outliers, of 

the eighty five soil samples from the Niger Delta, Nigeria. 
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Figure 3 Plots of regression coefficient from partial least squares regression (PLSR) 

analysis for (a) alkanes and (b) polycyclic aromatic hydrocarbons (PAHs), based on 

visible and near infrared (vis–NIR) spectra of oil-contaminated soil samples from three 

sites in the Niger Delta, Nigeria. Wavelengths highlighted on the plot are the potential 

features of PAHs and alkanes. 
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Figure 4 Average raw visible and near infrared (vis–NIR) spectrum of oil-contaminated 

soil spectra from three crude oil spill sites in the Niger Delta region of Nigeria. 

Wavelengths of 1712, 1758, 2207, and 2302 nm are associated with hydrocarbons, while 

1415 and 1914 nm are absorption features of water in the second and first overtones, 

respectively. 
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Figure 5 Values of alkanes measured with gas chromatography mass-spectrometry (GC-

MS) plotted against predicted concentrations from visible and near infrared (vis–NIR) 

spectroscopy based on partial least squares regression (PLSR) in (a) cross-validation and 

(b) prediction, and random forest (RF) in (c) cross-validation and (d) prediction for 

samples from the Niger Delta, Nigeria.  
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Figure 6 Scatter plots of the measured polycyclic aromatic hydrocarbons (PAHs) using 

gas chromatography mass-spectrometry (GC-MS) versus visible and near infrared (vis-

NIR) spectroscopy predicted concentrations based on (A) partial least squares regression 

(PLSR) in (a) cross-validation and (b) prediction, and (B) random forest (RF) method in 

(c) cross-validation and (d) prediction for samples from the Niger Delta, Nigeria.  

 


