9 research outputs found

    Bio)Sensor Approach in the Evaluation of Polyphenols in Vegetal Matrices

    Get PDF
    Polyphenols are compounds widely distributed in the plant kingdom and have attracted much attention, because of their health benefits and important properties such as radical scavenging, metal chelating agents, inhibitors of lipoprotein oxidation, anti-inflammatory and anti-allergic activities. Due to their important role in the diet and in therapy, it is important to estimate their content in the different matrices of interest. Besides classical analytical methods, new emerging technologies have also appeared in the last decade aiming for simple and eventually cheap detection of polyphenols. This review focused on the recent applications of biosensing-based technologies for polyphenol estimation in vegetal matrices, using different transduction principles. These analytical tools are generally fast, giving responses in the order of a few seconds/minutes, and also very sensitive and generally selective (mainly depending on the enzyme used). Direct measurements in most of the investigated matrices were possible, both in aqueous and organic phases

    Bioactive molecules from plants: discovery and pharmaceutical applications

    Get PDF
    The plant kingdom is one of the richest sources of bioactive compounds with pharmaceutical potential [...

    Paclitaxel/methotrexate co-loaded PLGA nanoparticles in glioblastoma treatment: Formulation development and in vitro antitumor activity evaluation

    Get PDF
    AimThe aim of this study was to improve the therapeutic index of chemotherapeutic drugs on glioblastoma cells through an improved co-drug delivery system. Materials and methodsMethotrexate (MTX) and paclitaxel (PTX) were co-loaded into poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) coated with polyvinyl alcohol (PVA) and Poloxamer188 (P188). Key findingsThe mean size of the NPs was about 212 nm, with a zeta potential of about −15.7 mV. Encapsulation efficiency (EE%) and drug loading (DL%) were determined to be 72% and 4% for MTX and 85% and 4.9% for PTX, respectively. The prepared NPs were characterized by differential thermal analysis (DTA) and thermogravimetric analysis (TGA). Moreover, an in vitro sustained release profile was observed for both drug loaded PLGA NPs. Glioblastoma cellular uptake of the NPs was confirmed by fluorescence microscopy and cell survival rate was investigated through the 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method after 48 h of incubation showing IC50 values of 24.5 μg·mL−1 for PTX and 9.5 μg·mL−1 for MTX for the MTX/PTX co-loaded PLGA nanoparticles coated with PVA/P188 (Co-2 NPs). Apoptosis and necrosis were also studied via flow cytometry, the lactate dehydrogenase (LDH) assay and the amount of anti-apoptotic protein (Bcl-2) expression. Blood compatibility of the co-delivery of PTX and MTX loaded PLGA NPs was investigated using a hemolysis method as well. SignificanceThe co-delivery of PTX and MTX loaded PLGA NPs is promising for the treatment of glioblastoma compared to their respective free drug formulations and, thus, should be further investigated.This work was supported by Tehran University of Medical Sciences, Grant No. 96-01-87-34138, Iran

    Nanocarriers: A Successful Tool to Increase Solubility, Stability and Optimise Bioefficacy of Natural Constituents

    No full text
    corecore