1,036 research outputs found

    Modelling organic material in activated sludge systems

    Get PDF
    A simple predictive model for the activated sludge reactor inorganic suspended solids (ISS) concentration is presented. It is based on the accumulation of influent ISS in the reactor and an ordinary heterotrophic organism (OHO) ISS content (fiOHO) of 0.15 mg ISS/mgOHOVSS and a variable phosphate accumulating organism (PAO) ISS content (fiPAO) proportional to their P content (fXBGP). The model is validated with data from 21 investigations conducted over the past 15 years on 30 aerobic and anoxic-aerobic nitrification denitrification (ND) systems and 18 anaerobic-anoxic-aerobic ND biological excess P removal (BEPR) systems variously fed artificial and real wastewater and operated from 3 to 20 d sludge age. The predicted reactor VSS/TSS ratio reflects the observed relative sensitivity to sludge age, which is low, and to BEPR, which is high. For effective use of the model for design, two significant issues require attention: measurement of the influent ISS concentration, which is not commonly done in wastewater characterisation analyses; and estimating a priori the P content of PAOs (fXBGP), which can vary considerably depending on the extent of anoxic P uptake BEPR that takes place in the system. Some guidance on selection of the mixed liquor VSS/TSS ratio for design is given

    Solar Physics - Plasma Physics Workshop

    Get PDF
    A summary of the proceedings of a conference whose purpose was to explore plasma physics problems which arise in the study of solar physics is provided. Sessions were concerned with specific questions including the following: (1) whether the solar plasma is thermal or non-themal; (2) what spectroscopic data is required; (3) what types of magnetic field structures exist; (4) whether magnetohydrodynamic instabilities occur; (5) whether resistive or non-magnetohydrodynamic instabilities occur; (6) what mechanisms of particle acceleration have been proposed; and (7) what information is available concerning shock waves. Very few questions were answered categorically but, for each question, there was discussion concerning the observational evidence, theoretical analyses, and existing or potential laboratory and numerical experiments

    Complex Action Support from Coincidences of Couplings

    Full text link
    Our model \cite{ownmMPP}\cite{SIMPP} with complex action in a functional integral formulation with path integrals extending over all times, past and future, is reviewed. Several numerical relations between coupling constants are presented as supporting evidence. The new evidence is that some more unexplained coincidences are explained in our model: 1) The "scale problem" is solved because the Higgs field expectation value is predicted to be very small compared to say some fundamental scale, that might be the Planck scale. 2) The Higgs VEV need not, however, to be just zero, but rather is predicted to be so that the running top-Yukawa coupling just is about to be unity at this scale; in this way the (weak) scale easily becomes "exponentially small". Instead of the top-Yukawa we should rather say the highest flavour Yukawa coupling here. These predictions are only achieved by allowing the principle of minimization of the imaginary part of the action SI(history) to to a certain extent adjust some coupling constants in addition to the initial conditions. If Susy-partners are not found in LHC, it would strengthen the need for "solution" of the hierarchy or rather scale problem along the lines of the present article.Comment: only text. Some printing mistakes corrected and a couple of new subsections inserted and abstract stylistically changed a bi

    Sulphate measurement in organic-rich solutions: Carbonate fusion pretreatment to remove organic interferences

    Get PDF
    Sulphate measurement using a barium sulphate turbidimetric method in solutions with high concentrations of organic material is shown to be problematic. The organics give background colour, which introduces a positive error to the measured absorption, and inhibit the barium sulphate precipitate, which results in a negative error. A carbonate fusion pretreatment of the sample results in the removal of the organic matter and associated interferences. With this pretreatment, excellent sulphate recoveries were obtained (100%). Rigorous testing of the method shows that reproducible and accurate results are obtainable

    Symmetry properties of the metric energy-momentum tensor in classical field theories and gravity

    Full text link
    We derive a generic identity which holds for the metric (i.e. variational) energy-momentum tensor under any field transformation in any generally covariant classical Lagrangian field theory. The identity determines the conditions under which a symmetry of the Lagrangian is also a symmetry of the energy-momentum tensor. It turns out that the stress tensor acquires the symmetry if the Lagrangian has the symmetry in a generic curved spacetime. In this sense a field theory in flat spacetime is not self-contained. When the identity is applied to the gauge invariant spin-two field in Minkowski space, we obtain an alternative and direct derivation of a known no-go theorem: a linear gauge invariant spin-2 field, which is dynamically equivalent to linearized General Relativity, cannot have a gauge invariant metric energy-momentum tensor. This implies that attempts to define the notion of gravitational energy density in terms of the metric energy--momentum tensor in a field-theoretical formulation of gravity must fail.Comment: Revised version to match the published version in Class. Quantum Gra

    Sex-related differences in coronary and carotid vessel geometry, plaque composition and shear stress obtained from imaging

    Get PDF
    Atherosclerosis manifests itself differently in men and women with respect to plaque initiation, progression and plaque composition. The observed delay in plaque progression in women is thought to be related to the hormonal status of women. Also features associated with the vulnerability of plaques to rupture seem to be less frequently present in women compared to men. Current invasive and non-invasive imaging modalities allow for visualization of plaque size, composition and high risk vulnerable plaque features. Moreover, image based modeling gives access to local shear stress and shear stress-related plaque growth. In this review, current knowledge on sex-related differences in plaque size, composition, high risk plaque features and shear stress related plaque growth in carotid and coronary arteries obtained from imaging are summarized.</p

    Logarithmic perturbation theory for quasinormal modes

    Get PDF
    Logarithmic perturbation theory (LPT) is developed and applied to quasinormal modes (QNMs) in open systems. QNMs often do not form a complete set, so LPT is especially convenient because summation over a complete set of unperturbed states is not required. Attention is paid to potentials with exponential tails, and the example of a Poschl-Teller potential is briefly discussed. A numerical method is developed that handles the exponentially large wavefunctions which appear in dealing with QNMs.Comment: 24 pages, 4 Postscript figures, uses ioplppt.sty and epsfig.st

    Stochastic Cellular Automata Model for Stock Market Dynamics

    Get PDF
    In the present work we introduce a stochastic cellular automata model in order to simulate the dynamics of the stock market. A direct percolation method is used to create a hierarchy of clusters of active traders on a two dimensional grid. Active traders are characterised by the decision to buy, (+1), or sell, (-1), a stock at a certain discrete time step. The remaining cells are inactive,(0). The trading dynamics is then determined by the stochastic interaction between traders belonging to the same cluster. Most of the stylized aspects of the financial market time series are reproduced by the model.Comment: 17 pages and 7 figure

    Gravitational Waves from Neutron Stars with Large Toroidal B-fields

    Full text link
    We show that NS's with large toroidal B-fields tend naturally to evolve into potent gravitational-wave (gw) emitters. The toroidal field B_t tends to distort the NS into a prolate shape, and this magnetic distortion can easily dominate over the oblateness ``frozen into'' the NS crust. An elastic NS with frozen-in B-field of this magnitude is clearly secularly unstable: the wobble angle between the NS's angular momentum J^i and the star's magnetic axis n_B^i grow on a dissipation timescale until J^i and n_B^i are orthogonal. This final orientation is clearly the optimal one for gravitational-wave (gw) emission. The basic cause of the instability is quite general, so we conjecture that the same final state is reached for a realistic NS. Assuming this, we show that for LMXB's with B_t of order 10^{13}G, the spindown from gw's is sufficient to balance the accretion torque--supporting a suggestion by Bildsten. The spindown rates of most millisecond pulsars can also be attributed to gw emission sourced by toroidal B-fields, and both these sources could be observed by LIGO II. While the first-year spindown of a newborn NS is most likely dominated by em processes, reasonable values of B_t and the (external) dipolar field B_d can lead to detectable levels of gw emission, for a newborn NS in our own galaxy.Comment: 7 pages; submitted to PRD; only minor revision

    Coronary fractional flow reserve measurements of a stenosed side branch: a computational study investigating the influence of the bifurcation angle

    No full text
    Background Coronary hemodynamics and physiology specific for bifurcation lesions was not well understood. To investigate the influence of the bifurcation angle on the intracoronary hemodynamics of side branch (SB) lesions computational fluid dynamics simulations were performed. Methods A parametric model representing a left anterior descending—first diagonal coronary bifurcation lesion was created according to the literature. Diameters obeyed fractal branching laws. Proximal and distal main branch (DMB) stenoses were both set at 60 %. We varied the distal bifurcation angles (40°, 55°, and 70°), the flow splits to the DMB and SB (55 %:45 %, 65 %:35 %, and 75 %:25 %), and the SB stenoses (40, 60, and 80 %), resulting in 27 simulations. Fractional flow reserve, defined as the ratio between the mean distal stenosis and mean aortic pressure during maximal hyperemia, was calculated for the DMB and SB (FFRSB) for all simulations. Results The largest differences in FFRSB comparing the largest and smallest bifurcation angles were 0.02 (in cases with 40 % SB stenosis, irrespective of the assumed flow split) and 0.05 (in cases with 60 % SB stenosis, flow split 55 %:45 %). When the SB stenosis was 80 %, the difference in FFRSB between the largest and smallest bifurcation angle was 0.33 (flow split 55 %:45 %). By describing the ΔPSB−QSB relationship using a quadratic curve for cases with 80 % SB stenosis, we found that the curve was steeper (i.e. higher flow resistance) when bifurcation angle increases (ΔP = 0.451*Q + 0.010*Q 2 and ΔP = 0.687*Q + 0.017*Q 2 for 40° and 70° bifurcation angle, respectively). Our analyses revealed complex hemodynamics in all cases with evident counter-rotating helical flow structures. Larger bifurcation angles resulted in more pronounced helical flow structures (i.e. higher helicity intensity), when 60 or 80 % SB stenoses were present. A good correlation (R2 = 0.80) between the SB pressure drop and helicity intensity was also found. Conclusions Our analyses showed that, in bifurcation lesions with 60 % MB stenosis and 80 % SB stenosis, SB pressure drop is higher for larger bifurcation angles suggesting higher flow resistance (i.e. curves describing the ΔPSB−QSB relationship being steeper). When the SB stenosis is mild (40 %) or moderate (60 %), SB resistance is minimally influenced by the bifurcation angle, with differences not being clinically meaningful. Our findings also highlighted the complex interplay between anatomy, pressure drops, and blood flow helicity in bifurcations
    • …
    corecore