4,305 research outputs found
Full-wave electromagnetic modes and hybridization in nanoparticle dimers
The plasmon hybridization theory is based on a quasi-electrostatic approximation of the Maxwellâs equations. It does not take into account magnetic interactions, retardation effects, and radiation losses. Magnetic interactions play a dominant role in the scattering from dielectric nanoparticles. The retardation effects play a fundamental role in the coupling of the modes with the incident radiation and in determining their radiative strength; their exclusion may lead to erroneous predictions of the excited modes and of the scattered power spectra. Radiation losses may lead to a significant broadening of the scattering resonances. We propose a hybridization theory for non-Hermitian composite systems based on the full-Maxwell equations that, overcoming all the limitations of the plasmon hybridization theory, unlocks the description of dielectric dimers. As an example, we decompose the scattered field from silicon and silver dimers, under different excitation conditions and gap-sizes, in terms of dimer modes, pinpointing the hybridizing isolated-sphere modes behind them
Three-dimensional anatomy of the transantral intraseptal infraorbital canal with the use of cone-beam computed tomography
The transantral or ectopic infraorbital canal (IOC) courses diagonally through the maxillary sinus (MS), thereby being exposed to risk during a number of surgical procedures. A few prior reports have presented evidence of a septa-embedded IOC, albeit only on single-plane slices. We identified this extremely rare variation of the IOC during a retrospective study of the cone-beam computed tomography files of 2 patients. In the first case, which involved a 34-year-old female patient, the canals and septa within the MS were bilaterally asymmetrical. On the right side, the sinus roof was attached to a short transverse septum that was traversed by the IOC, while the left sinus featured an oblique large septum that divided it into antero-superior and posterior chambers. The left IOC was embedded within the septum rather than within the orbital floor above the septum. In the second case, which concerned a 36-year-old male patient, the left MS featured an almost completely oblique/vertical septum that divided it into anterior and posterior chambers and also embedded the respective IOC, which was thus absent from the orbital floor. In both cases, infraorbital recesses in the anterior chambers of the MS were found that, if not documented on three-dimensional (3D) renderisations, could have been misidentified as infraorbital (Haller) cells. To the best of our knowledge, this is the first report to document the 3D anatomy of an extremely rare variant, namely a septum-embedded transantral IOC. Such a variant, if not adequately documented preoperatively, could divert the transmaxillary corridors down false paths or else expose the IOC to damage during surgical procedures involving access to tumours
Experimental Analysis of Partial Evaporation Micro-ORC for low -temperature Heat Recovery
In this paper, we present an experimental assessment of the performance of a partial evaporating organic Rankine cycle (PE-ORC) power system. The system converts low temperature heat into electrical energy, with a power size around 1 kW, thus suitable for micro generation in the residential sector. Although the test bench was designed for operating with superheated vapour at the expander inlet, it has demonstrated to be able to work with the expansion occurring entirely in two-phase condition. Since the direct measurement of the vapour quality is not possible using the sensors installed in the test rig, the state of the fluid in the two-phase condition is estimated by means of the thermal balance at the heat exchangers, so the thermodynamic cycle can be evaluated. Temperatures of the heat source in the range between 40 C and 75 C have been tested, and for each temperature value the vapour quality at the expander inlet has been varied by regulating the feed -pump rotating speed. Experimental data are provided regarding the performance of the overall cycle, of the heat exchangers, of the expander and of the feed -pump. It was observed that the effectiveness of the evaporator and the efficiency of the pump are improved with respect to the operation with superheated vapour at the expander inlet. However, the overall performance is lower, especially due to the high ratio of the pump consumption over the expander produced power, commonly called back work ratio (BWR). The latter, under some boundary conditions, has resulted higher than the unit, meaning that the system is not able to produce net electrical power. The aim of the paper is to identify the design characteristics required by a micro -ORC energy system in order to enhance its performance in the PE operating mode
An off-centred bulge or a satellite? Hydrodynamical N-body simulations of the disc galaxy NGC 5474
We present dynamical models of the star-forming galaxy NGC 5474 based on N-body hydrodynamical numerical simulations. We investigate the possible origin of the compact round stellar structure, generally interpreted as the bulge of the galaxy, but unusually off-set by â 1 kpc in projection from the visual and the kinematic centres of both the star and the gas discs. We argue that it is very unlikely that the putative bulge is in a coplanar orbit in the disc plane, showing that such a configuration would be hardly compatible with its smooth and regular spatial distribution, and, in case its mass is above 108 Mâ, also with the regular H I velocity field of NGC 5474. Instead, if the putative bulge is in fact an early-type satellite galaxy orbiting around NGC 5474, not only the off-set can be easily produced by projection effects, but our simulations suggest that the gravitational interaction between the two systems can explain also the warped H I distribution of NGC 5474 and the formation of its loose spiral arms. As a by-product of the simulations, we find that the peculiar overdensity of old stars detected in the south-west region of NGC 5474 may be explained with the interaction between NGC 5474 and a smaller stellar system, unrelated to the putative bulge, accreted in the disc plane
MicroRNA Roles in Cell Reprogramming Mechanisms
Cell reprogramming is a groundbreaking technology that, in few decades, generated a new paradigm in biomedical science. To date we can use cell reprogramming to potentially generate every cell type by converting somatic cells and suitably modulating the expression of key transcription factors. This approach can be used to convert skin fibroblasts into pluripotent stem cells as well as into a variety of differentiated and medically relevant cell types, including cardiomyocytes and neural cells. The molecular mechanisms underlying such striking cell phenotypes are still largely unknown, but in the last decade it has been proven that cell reprogramming approaches are significantly influenced by non-coding RNAs. Specifically, this review will focus on the role of microRNAs in the reprogramming processes that lead to the generation of pluripotent stem cells, neurons, and cardiomyocytes. As highlighted here, non-coding RNA-forced expression can be sufficient to support some cell reprogramming processes, and, therefore, we will also discuss how these molecular determinants could be used in the future for biomedical purposes
Preparation of acetazolamide composite microparticles by supercritical antisolvent techniques
The possibility of preparation of ophthalmic drug delivery systems using compressed anti-solvent technology was evaluated. and RL 100 were used as drug carriers, acetazolamide was the model drug processed. Compressed anti-solvent experiments were carried out as
a semi-continuous or a batch operation from a liquid solution of polymer(s) + solute dissolved in acetone. Both techniques allowed the recovery
of composite particles, but the semi-continuous operation yielded smaller and less aggregated populations than the batch operation. The release
behaviour of acetazolamide from the prepared microparticles was studied and most products exhibited a slower release than the single drug.
Moreover, the release could be controlled to some extent by varying the ratio of the two Eudragit used in the formulation and by selecting one
or the other anti-solvent technique. Simple diffusion models satisfactorily described the release profiles. Composites specifically produced by
semi-continuous technique have a drug release rate controlled by a diffusion mechanism, whereas for composites produced by the batch operation,
the polymer swelling also contributes to the overall transport mechanism
SANEPIC: A Map-Making Method for Timestream Data From Large Arrays
We describe a map-making method which we have developed for the Balloon-borne
Large Aperture Submillimeter Telescope (BLAST) experiment, but which should
have general application to data from other submillimeter arrays. Our method
uses a Maximum Likelihood based approach, with several approximations, which
allows images to be constructed using large amounts of data with fairly modest
computer memory and processing requirements. This new approach, Signal And
Noise Estimation Procedure Including Correlations (SANEPIC), builds upon
several previous methods, but focuses specifically on the regime where there is
a large number of detectors sampling the same map of the sky, and explicitly
allowing for the the possibility of strong correlations between the detector
timestreams. We provide real and simulated examples of how well this method
performs compared with more simplistic map-makers based on filtering. We
discuss two separate implementations of SANEPIC: a brute-force approach, in
which the inverse pixel-pixel covariance matrix is computed; and an iterative
approach, which is much more efficient for large maps. SANEPIC has been
successfully used to produce maps using data from the 2005 BLAST flight.Comment: 27 Pages, 15 figures; Submitted to the Astrophysical Journal; related
results available at http://blastexperiment.info/ [the BLAST Webpage
Sedimentary Iron Cycling and the Origin and Preservation of Magnetization in Platform Carbonate Muds, Andros Island, Bahamas
Carbonate muds deposited on continental shelves are abundant and well-preserved throughout the geologic record because shelf strata are difficult to subduct and peritidal carbonate units often form thick, rheologically strong units that resist penetrative deformation. Much of what we know about pre-Mesozoic ocean chemistry, carbon cycling, and global change is derived from isotope and trace element geochemistry of platform carbonates. Paleomagnetic data from the same sediments would be invaluable, placing records of paleolatitude, paleogeography, and perturbations to the geomagnetic field in the context and relative chronology of chemostratigraphy. To investigate the depositional and early diagenetic processes that contribute to magneitzation in carbonates, we surveyed over 500 core and surface samples of peritidal, often microbially bound carbonate muds spanning the last not, vert, similar 1000 yr and deposited on top of Pleistocene aeolianites in the Triple Goose Creek region of northwest Andros Island, Bahamas. Sedimentological, geochemical, magnetic and ferromagnetic resonance properties divide the sediment columns into three biogeochemical zones. In the upper sediments, the dominant magnetic mineral is magnetite, produced by magnetotactic bacteria and dissimiliatory microbial iron metabolism. At lower depths, above or near mean tide level, microbial iron reduction dissolves most of the magnetic particles in the sediment. In some cores, magnetic iron sulfides precipitate in a bottom zone of sulfate reduction, likely coupled to the oxidation of decaying mangrove roots. The remanent magnetization preserved in all oriented samples appears indistinguishable from the modern local geomagnetic field, which reflects the post-depositional origin of magnetic particles in the lower zone of the parasequence. While we cannot comment on the effects of late-stage diagenesis or metamorphism on remanence in carbonates, we postulate that early-cemented, thin-laminated parasequence tops in ancient peritidal carbonates are mostly likely to preserve syn-depositional paleomagnetic directions and magnetofossil stratigraphies
Modulation of CYP1A1 by PKC Inhibitors and TPA Pre-Treatments in MH1C1 Rat Hepatoma Cells Exposed to 3 -Methylcholanthrene
Cytochrome P4501A1 (CYP1A1), an enzyme known to metabolize polycyclic aromatic hydrocarbons, is regulated by the aryl hydrocarbon receptor (AhR). The involvement of protein kinase C (PKC) in the regulation of AhR signal transduction pathway, has been widely studied but the role of specific PKC isoform(s) involved in this process it is not well clarified. To study which PKC isoform(s) is implicated in the regulation of CYP1A1, in the poorly tumorigenic MH1C1 rat hepatoma cells, we examined the effects of some PKC pharmacological inhibitors, Calphostin C (CAL), Staurosporine (STA) and H7, and of 12-0-tetradecanoyl phorbol 13-acetate (TPA), a PKC activator, on basal and 3- methylcholanthrene (MC)-induced CYP1A1 protein expression and mediated ethoxyresorufin O-deethylation (EROD) activity. In parallel, the activities of PKC-α, -ÎČI, -ÎŽ and -Δ isoforms, the most expressed in MH1C1 cells, were monitored. After pre-treatment with CAL, STA and H7, the MC-induced CYP1A1 protein and EROD activity were rapidly reduced with temporal profile similar to the profile of the activity of α and ÎČ1 PKC isoforms. Moreover, TPA pre-treatment induced a biphasic effect on EROD activity, and a decline of PKC -ÎČI and -α, in first instance, and -ÎŽ and -Δ activities later on. These findings clearly show that, in MH1C1 cells, PKC is involved in CYP1A1 regulation and that α and ÎČI classic PKC isoforms play an active role in modulating this process
EChOSim: The Exoplanet Characterisation Observatory software simulator
EChOSim is the end-to-end time-domain simulator of the Exoplanet
Characterisation Observatory (EChO) space mission. EChOSim has been developed
to assess the capability EChO has to detect and characterize the atmospheres of
transiting exoplanets, and through this revolutionize the knowledge we have of
the Milky Way and of our place in the Galaxy. Here we discuss the details of
the EChOSim implementation and describe the models used to represent the
instrument and to simulate the detection. Software simulators have assumed a
central role in the design of new instrumentation and in assessing the level of
systematics affecting the measurements of existing experiments. Thanks to its
high modularity, EChOSim can simulate basic aspects of several existing and
proposed spectrometers for exoplanet transits, including instruments on the
Hubble Space Telescope and Spitzer, or ground-based and balloon borne
experiments. A discussion of different uses of EChOSim is given, including
examples of simulations performed to assess the EChO mission
- âŠ