2,437 research outputs found

    The Low Energy Tagger for the KLOE-2 experiment

    Full text link
    The KLOE experiment at the upgraded DAFNE e+e- collider in Frascati (KLOE-2) is going to start a new data taking at the beginning of 2010 with its detector upgraded with a tagging system for the identification of gamma-gamma interactions. The tagging stations for low-energy e+e- will consist in two calorimeters The calorimeter used to detect low-energy e+e- will be placed between the beam-pipe outer support structure and the inner wall of the KLOE drift chamber. This calorimeter will be made of LYSO crystals readout by Silicon Photomultipliers, to achieve an energy resolution better than 8% at 200 MeV.Comment: 4 pages, 5 figures, in the proceedings of "Frontier detectors for frontier physics", isola d'Elba, Italy, May 200

    Measurement of neutron detection efficiency between 22 and 174 MeV using two different kinds of Pb-scintillating fiber sampling calorimeters

    Full text link
    We exposed a prototype of the lead-scintillating fiber KLOE calorimeter to neutron beam of 21, 46 and 174 MeV at The Svedberg Laboratory, Uppsala, to study its neutron detection efficiency. This has been found larger than what expected considering the scintillator thickness of the prototype. %To check our method, we measured also the neutron %detection efficiency of a 5 cm thick NE110 scintillator. We show preliminary measurement carried out with a different prototype with a larger lead/fiber ratio, which proves the relevance of passive material to neutron detection efficiency in this kind of calorimeters

    Measurement of the neutron detection efficiency of a 80% absorber - 20% scintillating fibers calorimeter

    Full text link
    The neutron detection efficiency of a sampling calorimeter made of 1 mm diameter scintillating fibers embedded in a lead/bismuth structure has been measured at the neutron beam of the The Svedberg Laboratory at Uppsala. A significant enhancement of the detection efficiency with respect to a bulk organic scintillator detector with the same thickness is observed.Comment: 10 pages, 7 figure

    A description of the ratio between electric and magnetic proton form factors by using space-like, time-like data and dispersion relations

    Full text link
    We use the available information on the ratio between the electric and magnetic proton form factors coming from recently published space-like data and from the few available time-like data. We apply a dispersive procedure on these data to evaluate the behaviour of this ratio, as a complex function, for all values of q^2.Comment: 12 pages, 7 Encapsulated Postscript figures, uses epsfig, rotating, exscale, amsmath, cite, latexsym, graphics, color packages, added reference

    Study of the time and space distribution of beta+ emitters from 80 MeV/u carbon ion beam irradiation on PMMA

    Full text link
    Proton and carbon ion therapy is an emerging technique used for the treatment of solid cancers. The monitoring of the dose delivered during such treatments and the on-line knowledge of the Bragg peak position is still a matter of research. A possible technique exploits the collinear 511\ \kilo\electronvolt photons produced by positrons annihilation from β+\beta^+ emitters created by the beam. This paper reports rate measurements of the 511\ \kilo\electronvolt photons emitted after the interactions of a 80\ \mega\electronvolt / u fully stripped carbon ion beam at the Laboratori Nazionali del Sud (LNS) of INFN, with a Poly-methyl methacrylate target. The time evolution of the β+\beta^+ rate was parametrized and the dominance of 11C^{11}C emitters over the other species (13N^{13}N, 15O^{15}O, 14O^{14}O) was observed, measuring the fraction of carbon ions activating β+\beta^+ emitters A0=(10.3±0.7)103A_0=(10.3\pm0.7)\cdot10^{-3}. The average depth in the PMMA of the positron annihilation from β+\beta^+ emitters was also measured, D_{\beta^+}=5.3\pm1.1\ \milli\meter, to be compared to the expected Bragg peak depth D_{Bragg}=11.0\pm 0.5\ \milli\meter obtained from simulations

    Charged particle's flux measurement from PMMA irradiated by 80 MeV/u carbon ion beam

    Full text link
    Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements done with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a Poly-methyl methacrylate target. Charged secondary particles, produced at 90°\degree with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight has been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time of flight information, and their emission region has been reconstructed backtracking from the drift chamber to the target. Moreover a position scan of the target indicates that the reconstructed emission region follows the movement of the expected Bragg peak position. Exploting the reconstruction of the emission region, an accuracy on the Bragg peak determination in the submillimeter range has been obtained. The measured differential production rate for protons produced with EkinProd>E^{\rm Prod}_{\rm kin} > 83 MeV and emitted at 90°\degree with respect to the beam line is: dNP/(dNCdΩ)(EkinProd>83 MeV,θ=90°)=(2.69±0.08stat±0.12sys)×104sr1dN_{\rm P}/(dN_{\rm C}d\Omega)(E^{\rm Prod}_{\rm kin} > 83 {\rm ~MeV}, \theta=90\degree)= (2.69\pm 0.08_{\rm stat} \pm 0.12_{\rm sys})\times 10^{-4} sr^{-1}.Comment: 13 pages, 9 figure

    Electrodynamic response of MgB2 sintered pellets and thin films

    Full text link
    We present a study of the electrodynamic response of MgB2 pellets and thin film samples exhibiting critical temperatures ranging between 26 and 38 K. We have performed accurate measurements of the surface impedance ZS =RS+iXS as a function of the temperature and of the magnitude of the electromagnetic field. The temperature variation and the field dependence of ZS was measured by a dielectric resonator cavity technique in the microwave region. In particular, the temperature variation of the magnetic penetration depth was also determined in the RF region by a single coil mutual inductance method. In the case of the films, for T<TC/2 a clear exponential behavior of the penetration depth is observed, which can be explained by a simple BCS s-wave model with a reduced value of the energy gap. On the contrary, pellets show no evidence of saturation, and the experimental results strictly follow a quadratic dependence down to the lowest temperatures. This behavior can be induced by the presence of metallic Mg inclusions that may locally depress the gap. The analysis of the field dependence of the surface impedance in the microwave region confirms that the electrodynamic response of MgB2 is dominated by different sources of dissipation, depending on the sample history, likely to be ascribed to the predominance of grain boundaries or normal regions on its surface.Comment: To appear as a chapter in "Studies of High Temperature Superconductors", Vol. 41, A.V. Narlikar ed., Nova Sci. Publ., New York. (submitted October 5, 2001). 21 pages, 16 figure

    Conductivity of underdoped YBa2Cu3O7-d : evidence for incoherent pair correlations in the pseudogap regime

    Full text link
    Conductivity due to superconducting fluctuations studied in optimally doped YBa2Cu3O7-d films displays a stronger decay law in temperature than explainable by theory. A formula is proposed, which fits the data very well with two superconductive parameters, Tc and the coherence length ksi_c0, and an energy scale Delta*. This is also valid in underdoped materials and enables to describe the conductivity up to 300 K with a single-particle excitations channel in parallel with a channel whose contribution is controlled by ksi_c0, Tc and Delta*. This allows to address the nature of the pseudogap in favour of incoherent pairing.Comment: 14 pages, 4 figures, 1 tabl

    Study of the a_0(980) meson via the radiative decay phi->eta pi^0 gamma with the KLOE detector

    Full text link
    We have studied the phi->a_0(980) gamma process with the KLOE detector at the Frascati phi-factory DAPhNE by detecting the phi->eta pi^0 gamma decays in the final states with eta->gamma gamma and eta->pi^+ pi^- pi^0. We have measured the branching ratios for both final states: Br(phi->eta pi^0 gamma)=(7.01 +/- 0.10 +/- 0.20)x10^-5 and (7.12 +/- 0.13 +/- 0.22)x10^-5 respectively. We have also extracted the a_0(980) mass and its couplings to eta pi^0, K^+ K^-, and to the phi meson from the fit of the eta pi^0 invariant mass distributions using different phenomenological models.Comment: 17 pages, 6 figures, submitted to Physics Letters B. Corrected typos in eq.

    Precision Measurement of KS Meson Lifetime with the KLOE detector

    Get PDF
    Using a large sample of pure, slow, short lived K0 mesons collected with KLOE detector at DaFne, we have measured the KS lifetime. From a fit to the proper time distribution we find tau = (89.562 +- 0.029_stat +- 0.043_syst) ps. This is the most precise measurement today in good agreement with the world average derived from previous measurements. We observe no dependence of the lifetime on the direction of the Ks.Comment: 5 pages, 7 figure
    corecore