145 research outputs found

    Noise suppression by noise

    Get PDF
    We have analyzed the interplay between an externally added noise and the intrinsic noise of systems that relax fast towards a stationary state, and found that increasing the intensity of the external noise can reduce the total noise of the system. We have established a general criterion for the appearance of this phenomenon and discussed two examples in detail.Comment: 4 pages, 4 figure

    Fisher Information as a Metric of Locally Optimal Processing and Stochastic Resonance

    Get PDF
    The origins of Fisher information are in its use as a performance measure for parametric estimation. We augment this and show that the Fisher information can characterize the performance in several other significant signal processing operations. For processing of a weak signal in additive white noise, we demonstrate that the Fisher information determines (i) the maximum output signal-to-noise ratio for a periodic signal; (ii) the optimum asymptotic efficacy for signal detection; (iii) the best cross-correlation coefficient for signal transmission; and (iv) the minimum mean square error of an unbiased estimator. This unifying picture, via inequalities on the Fisher information, is used to establish conditions where improvement by noise through stochastic resonance is feasible or not

    Energetics and Possible Formation and Decay Mechanisms of Vortices in Helium Nanodroplets

    Full text link
    The energy and angular momentum of both straight and curved vortex states of a helium nanodroplet are examined as a function of droplet size. For droplets in the size range of many experiments, it is found that during the pickup of heavy solutes, a significant fraction of events deposit sufficient energy and angular momentum to form a straight vortex line. Curved vortex lines exist down to nearly zero angular momentum and energy, and thus could in principle form in almost any collision. Further, the coalescence of smaller droplets during the cooling by expansion could also deposit sufficient angular momentum to form vortex lines. Despite their high energy, most vortices are predicted to be stable at the final temperature (0.38 K) of helium nanodroplets due to lack of decay channels that conserve both energy and angular momentum.Comment: 10 pages, 8 figures, RevTex 4, submitted to Phys. Rev.

    Noise and Periodic Modulations in Neural Excitable Media

    Get PDF
    We have analyzed the interplay between noise and periodic modulations in a mean field model of a neural excitable medium. To this purpose, we have considered two types of modulations; namely, variations of the resistance and oscillations of the threshold. In both cases, stochastic resonance is present, irrespective of if the system is monostable or bistable.Comment: 13 pages, RevTex, 5 PostScript figure

    Stochastic Resonance of Ensemble Neurons for Transient Spike Trains: A Wavelet Analysis

    Full text link
    By using the wavelet transformation (WT), we have analyzed the response of an ensemble of NN (=1, 10, 100 and 500) Hodgkin-Huxley (HH) neurons to {\it transient} MM-pulse spike trains (M=13M=1-3) with independent Gaussian noises. The cross-correlation between the input and output signals is expressed in terms of the WT expansion coefficients. The signal-to-noise ratio (SNR) is evaluated by using the {\it denoising} method within the WT, by which the noise contribution is extracted from output signals. Although the response of a single (N=1) neuron to sub-threshold transient signals with noises is quite unreliable, the transmission fidelity assessed by the cross-correlation and SNR is shown to be much improved by increasing the value of NN: a population of neurons play an indispensable role in the stochastic resonance (SR) for transient spike inputs. It is also shown that in a large-scale ensemble, the transmission fidelity for supra-threshold transient spikes is not significantly degraded by a weak noise which is responsible to SR for sub-threshold inputs.Comment: 20 pages, 4 figure

    Local-feature-based similarity measure for stochastic resonance in visual perception of spatially structured images

    Get PDF
    For images, stochastic resonance or useful-noise effects have previously been assessed with low-level pixel-based information measures. Such measures are not sensitive to coherent spatial structures usually existing in images. As a result, we show that such measures are not sufficient to properly account for stochastic resonance occurring in visual perception. We introduce higher-level similarity measures, inspired from visual perception, and based on local feature descriptors of scale invariant feature transform (SIFT) type. We demonstrate that such SIFT-based measures allow for an assessment of stochastic resonance that matches the visual perception of images with spatial structures. Constructive action of noise is registered in this way with both additive noise and multiplicative speckle noise. Speckle noise, with its grainy appearance, is particularly prone to introducing spurious spatial structures in images, and the stochastic resonance visually perceived and quantitatively assessed with SIFT-based measures is specially examined in this context

    Attentive Learning of Sequential Handwriting Movements: A Neural Network Model

    Full text link
    Defense Advanced research Projects Agency and the Office of Naval Research (N00014-95-1-0409, N00014-92-J-1309); National Science Foundation (IRI-97-20333); National Institutes of Health (I-R29-DC02952-01)
    corecore