2,879 research outputs found

    The characteristics of the IR emission features in the spectra of Herbig Ae stars: Evidence for chemical evolution

    Get PDF
    Herbig Ae/Be stars are a class of young pre-main sequence stellar objects of intermediate mass and are known to have varying amounts of natal cloud material still present in their direct vicinity. We characterise the IR emission bands, due to fluorescence by PAH molecules, in the spectra of Herbig Ae/Be stars and link observed variations to spatial aspects of the mid-IR emission. We analysed two PAH dominated spectra from a sample of 15 Herbig Ae/Be stars observed with Spitzer and derive profiles of the major PAH bands. The shape and the measured band characteristics show pronounced variations between the two Spitzer spectra. Those variations parallel those found between three ISO spectra of other, well-studied, Herbig Ae/Be stars. The derived profiles are compared to those from a broad sample of sources. The Spitzer and ISO spectra exhibit characteristics commonly interpreted respectively as interstellar matter-like (ISM), non-ISM-like, or a combination of the two. We argue that the PAH emission detected from the sources exhibiting a combination of ISM-like and non-ISM-like characteristics indicates the presence of two dissimilar, spatially separated, PAH families. As the shape of the individual PAH band profiles reflects the composition of the PAH molecules involved, this demonstrates that PAHs in subsequent, evolutionary linked stages of star formation are different from those in the general ISM, implying active chemistry. None of the detected PAH emission can be associated with the (unresolved) disk and is thus associated with the circumstellar cloud. This implies that chemical changes may already occur in the natal cloud and not necessarily in the disk

    Herschel PACS and SPIRE spectroscopy of the Photodissociation Regions associated with S 106 and IRAS 23133+6050

    Get PDF
    Photodissociation regions (PDRs) contain a large fraction of all of the interstellar matter in galaxies. Classical examples include the boundaries between ionized regions and molecular clouds in regions of massive star formation, marking the point where all of the photons energetic enough to ionize hydrogen have been absorbed. In this paper we determine the physical properties of the PDRs associated with the star forming regions IRAS 23133+6050 and S 106 and present them in the context of other Galactic PDRs associated with massive star forming regions. We employ Herschel PACS and SPIRE spectroscopic observations to construct a full 55-650 {\mu}m spectrum of each object from which we measure the PDR cooling lines, other fine- structure lines, CO lines and the total far-infrared flux. These measurements are then compared to standard PDR models. Subsequently detailed numerical PDR models are compared to these predictions, yielding additional insights into the dominant thermal processes in the PDRs and their structures. We find that the PDRs of each object are very similar, and can be characterized by a two-phase PDR model with a very dense, highly UV irradiated phase (n \sim 10^6 cm^(-3), G0_0 \sim 10^5) interspersed within a lower density, weaker radiation field phase (n \sim 10^4 cm^(-3), G0_0 \sim 10^4). We employed two different numerical models to investigate the data, firstly we used RADEX models to fit the peak of the 12^{12}CO ladder, which in conjunction with the properties derived yielded a temperature of around 300 K. Subsequent numerical modeling with a full PDR model revealed that the dense phase has a filling factor of around 0.6 in both objects. The shape of the 12^{12}CO ladder was consistent with these components with heating dominated by grain photoelectric heating. An extra excitation component for the highest J lines (J > 20) is required for S 106.Comment: 20 pages, 10 figures, A&A Accepte

    Averaging in Cosmology

    Get PDF
    In this paper we discuss the effect of local inhomogeneities on the global expansion of nearly FLRW universes, in a perturbative setting. We derive a generic linearized averaging operation for metric perturbations from basic assumptions, and we explicify the issue of gauge invariance. We derive a gauge invariant expression for the back-reaction of density inhomogeneities on the global expansion of perturbed FLRW spacetimes, in terms of observable quantities, and we calculate the effect quantitatively. Since we do not adopt a comoving gauge, our result incorporates the back-reaction on the metric due to scalar velocity and vorticity perturbations. The results are compared with the results by other authors in this field.Comment: 24 pages, Latex, accepted for publication in Phys. Rev.

    Scalar and vector decomposition of the nucleon self-energy in the relativistic Brueckner approach

    Full text link
    We investigate the momentum dependence of the nucleon self-energy in nuclear matter. We apply the relativistic Brueckner-Hartree-Fock approach and adopt the Bonn A potential. A strong momentum dependence of the scalar and vector self-energy components can be observed when a commonly used pseudo-vector choice for the covariant representation of the T-matrix is applied. This momentum dependence is dominated by the pion exchange. We discuss the problems of this choice and its relations to on-shell ambiguities of the T-matrix representation. Starting from a complete pseudo-vector representation of the T-matrix, which reproduces correctly the pseudo-vector pion-exchange contributions at the Hartree-Fock level, we observe a much weaker momentum dependence of the self-energy. This fixes the range of the inherent uncertainty in the determination of the scalar and vector self-energy components. Comparing to other work, we find that extracting the self-energy components by a fit to the single particle potential leads to even more ambiguous results.Comment: 35 pages RevTex, 7 PS figures, replaced by a revised and extended versio

    Affective iconic words benefit from additional sound–meaning integration in the left amygdala

    Get PDF
    Recent studies have shown that a similarity between sound and meaning of a word (i.e., iconicity) can help more readily access the meaning of that word, but the neural mechanisms underlying this beneficial role of iconicity in semantic processing remain largely unknown. In an fMRI study, we focused on the affective domain and examined whether affective iconic words (e.g., high arousal in both sound and meaning) activate additional brain regions that integrate emotional information from different domains (i.e., sound and meaning). In line with our hypothesis, affective iconic words, compared to their non‐iconic counterparts, elicited additional BOLD responses in the left amygdala known for its role in multimodal representation of emotions. Functional connectivity analyses revealed that the observed amygdalar activity was modulated by an interaction of iconic condition and activations in two hubs representative for processing sound (left superior temporal gyrus) and meaning (left inferior frontal gyrus) of words. These results provide a neural explanation for the facilitative role of iconicity in language processing and indicate that language users are sensitive to the interaction between sound and meaning aspect of words, suggesting the existence of iconicity as a general property of human language

    Second Low Temperature Phase Transition in Frustrated UNi_4B

    Get PDF
    Hexagonal UNi_4B is magnetically frustrated, yet it orders antiferromagnetically at T_N = 20 K. However, one third of the U-spins remain paramagnetic below this temperature. In order to track these spins to lower temperature, we measured the specific heat C of \unib between 100 mK and 2 K, and in applied fields up to 9 T. For zero field there is a sharp kink in C at TT^\ast\approx 330 mK, which we interpret as an indication of a second phase transition involving paramagnetic U. The rise in γ=C/T\gamma = C/T between 7 K and 330 mK and the absence of a large entropy liberated at TT^\ast may be due to a combination of Kondo screening effects and frustration that strongly modifies the low T transition.Comment: 4 pages, 4 figure

    Cost-effectiveness analysis on elderly pneumococcal vaccination in the Netherlands:Challenging the Dutch Health Council's advice

    Get PDF
    Recently, the Dutch Health Council advised on elderly pneumococcal vaccination favouring the conventional polysaccharide vaccine over the novel conjugated vaccine. This advice was strongly inspired by a cost-effectiveness analysis considered to show favourable outcomes for the polysaccharide but not for the conjugated vaccine. We argue that using the same data and methods as presented by the Health Council, a different perspective on the results leads to a conclusion that not only the polysaccharide but also the conjugated pneumococcal vaccine is cost-effective. Our alternative perspective concerns the use of realistic vaccine prices, and applying an adequate time horizon for cost-effectiveness modelling. Notably, for one-off vaccination of 65-years old elderly, in all investigated analyses, also the conjugated vaccine seems cost-effective; i.e. well below the threshold of €20,000 per quality-adjusted life year, reflecting the most stringent threshold used for vaccines in the Netherlands

    MiR-193b promotes autophagy and non-apoptotic cell death in oesophageal cancer cells

    Get PDF
    Background: Successful treatment of oesophageal cancer is hampered by recurrent drug resistant disease. We have previously demonstrated the importance of apoptosis and autophagy for the recovery of oesophageal cancer cells following drug treatment. When apoptosis (with autophagy) is induced, these cells are chemosensitive and will not recover following chemotherapy treatment. In contrast, when cancer cells exhibit only autophagy and limited Type II cell death, they are chemoresistant and recover following drug withdrawal. Methods: MicroRNA (miRNA) expression profiling of an oesophageal cancer cell line panel was used to identify miRNAs that were important in the regulation of apoptosis and autophagy. The effects of miRNA overexpression on cell death mechanisms and recovery were assessed in the chemoresistant (autophagy inducing) KYSE450 oesophageal cancer cells. Results: MiR-193b was the most differentially expressed miRNA between the chemosensitive and chemoresistant cell lines with higher expression in chemosensitive apoptosis inducing cell lines. Colony formation assays showed that overexpression of miR-193b significantly impedes the ability of KYSE450 cells to recover following 5-fluorouracil (5-FU) treatment. The critical mRNA targets of miR-193b are unknown but target prediction and siRNA data analysis suggest that it may mediate some of its effects through stathmin 1 regulation. Apoptosis was not involved in the enhanced cytotoxicity. Overexpression of miR-193b in these cells induced autophagic flux and non-apoptotic cell death. Conclusion: These results highlight the importance of miR-193b in determining oesophageal cancer cell viability and demonstrate an enhancement of chemotoxicity that is independent of apoptosis induction
    corecore