77 research outputs found

    Small-angle neutron scattering of (Er₀.₈Ho₀.₂)Rh₄B₄

    Get PDF
    The (Er1-xHox)Rh4B4 pseudoternary alloy system has a minimum in the phase boundary between the superconducting and ferromagnetic phases near x=0.3. This minimum has been identified as due to the competing magnetic anisotropies of Er and Ho. It has also been suggested that there could be a Lifschitz point near the minimum. Using the 30-m SANS camera at the National Center for Small-Angle Scattering Research at ORNL, we have observed a peak in the SANS pattern for (Er 0.8Ho0.2)Rh4B4 at Q=0.065 Å-1. This peak appears for temperatures between Tc2, measured upon cooling, and Tm, and corresponds to a modulation of the magnetic moment with a wavelength of about 100 Å, demonstrating that the modulated moment phase exists away from the ErRh 4B4 end of the phase diagram. The wavelength of the modulation is the same as was previously observed in ErRh4B 4. The fact that the wavelength of the modulation remains finite near x=0.3 appears to rule out the possibility of Lifschitz behavior near this point

    Antiferromagnetic critical pressure in URu2Si2 under hydrostatic conditions

    Full text link
    The onset of antiferromagnetic order in URu2Si2 has been studied via neutron diffraction in a helium pressure medium, which most closely approximates hydrostatic conditions. The antiferromagnetic critical pressure is 0.80 GPa, considerably higher than values previously reported. Complementary electrical resistivity measurements imply that the hidden order-antiferromagnetic bicritical point far exceeds 1.02 GPa. Moreover, the redefined pressure-temperature phase diagram suggests that the superconducting and antiferromagnetic phase boundaries actually meet at a common critical pressure at zero temperature.Comment: 5 pgs, 4 figs; AFM ordered moment revised to 0.5 muB, added and corrected citations and reference

    Acquisition of Single Crystal Growth and Characterization Equipment

    Get PDF
    Final Report for DOE Grant No. DE-FG02-04ER46178 'Acquisition of Single Crystal Growth and Characterization Equipment'. There is growing concern in the condensed matter community that the need for quality crystal growth and materials preparation laboratories is not being met in the United States. It has been suggested that there are too many researchers performing measurements on too few materials. As a result, many user facilities are not being used optimally. The number of proficient crystal growers is too small. In addition, insufficient attention is being paid to the enterprise of finding new and interesting materials, which is the driving force behind much of condensed matter research and, ultimately, technology. While a detailed assessment of this situation is clearly needed, enough evidence of a problem already exists to compel a general consensus that the situation must be addressed promptly. This final report describes the work carried out during the last four years in our group, in which a state-of-the-art single crystal growth and characterization facility was established for the study of novel oxides and intermetallic compounds of rare earth, actinide and transition metal elements. Research emphasis is on the physics of superconducting (SC), magnetic, heavy fermion (HF), non-Fermi liquid (NFL) and other types of strongly correlated electron phenomena in bulk single crystals. Properties of these materials are being studied as a function of concentration of chemical constituents, temperature, pressure, and magnetic field, which provide information about the electronic, lattice, and magnetic excitations at the root of various strongly correlated electron phenomena. Most importantly, the facility makes possible the investigation of material properties that can only be achieved in high quality bulk single crystals, including magnetic and transport phenomena, studies of the effects of disorder, properties in the clean limit, and spectroscopic and scattering studies through efforts with numerous collaborators. These endeavors will assist the effort to explain various outstanding theoretical problems, such as order parameter symmetries and electron-pairing mechanisms in unconventional superconductors, the relationship between superconductivity and magnetic order in certain correlated electron systems, the role of disorder in non-Fermi liquid behavior and unconventional superconductivity, and the nature of interactions between localized and itinerant electrons in these materials. Understanding the mechanisms behind strongly correlated electron behavior has important technological implications

    Crystalline Electric Field and Kondo Effect in SmOs4Sb12

    Get PDF
    Our ultrasound results obtained in pulsed magnetic fields show that the filled-skutterudite compound SmOs4_4Sb12_{12} has the Γ67\Gamma_{67} quartet crystalline-electric-field ground state. This fact suggests that the multipolar degrees of freedom of the Γ67\Gamma_{67} quartet play an important role in the unusual physical properties of this material. On the other hand, the elastic response below \approx 20 T cannot be explained using the localized 4ff-electron model, which does not take into account the Kondo effect or ferromagnetic ordering. The analysis result suggests the presence of a Kondo-like screened state at low magnetic fields and its suppression at high magnetic fields above 20 T even at low temperatures.Comment: 4 pages, 4 figure

    Magnetism and Superconductivity in (Er₀.₁₆Ho₀.₈₄)Rh₄B₄

    Get PDF
    The superconducting and ferromagnetic phase boundaries in the (Er1-xHox)Rh4B4 mixed ternary alloy system meet in a multicritical point at xcr ≈ 0.9. For xcr, the compounds first become superconducting as the temperature is lowered, and then lose superconductivity in a transition to ferromagnetism. The coexistence of superconductivity and ferromagnetism for alloys near the erbium-rich end of the phase diagram is well established. It has also been suggested that ferromagnetism and superconductivity coexist in alloys with x just below xcr. We have carried out neutron-diffraction, ac magnetic susceptibility, and heat-capacity measurements on a sample of (Er0.16Ho0.84)Rh4B4 to investigate the possibility of coexistence of ferromagnetism and superconductivity for x ≈ xcr. We find that there are minor discrepancies in the superconducting and magnetic transition temperatures reported for different samples of (Er0.16Ho0.84)Rh4B4, but that ferromagnetism and superconductivity do occur simultaneously over a narrow temperature range in this sample. We suggest that an inhomogeneous state occurs, consisting of separate ferromagnetic and superconducting regions, rather than microscopic coexistence

    Limits on Superconductivity-Related Magnetization in Sr2_2RuO4_4 and PrOs4_4Sb12_{12} from Scanning SQUID Microscopy

    Get PDF
    We present scanning SQUID microscopy data on the superconductors Sr2RuO4 (Tc = 1.5 K) and PrOs4_4Sb12_{12} (Tc = 1.8 K). In both of these materials, superconductivity-related time-reversal symmetry-breaking fields have been observed by muon spin rotation; our aim was to visualize the structure of these fields. However in neither Sr2_2RuO4_4 nor PrOs4_4Sb12_{12} do we observe spontaneous superconductivity-related magnetization. In Sr2_2RuO4_4, many experimental results have been interpreted on the basis of a px±ipypx \pm ipy superconducting order parameter. This order parameter is expected to give spontaneous magnetic induction at sample edges and order parameter domain walls. Supposing large domains, our data restrict domain wall and edge fields to no more than ~0.1% and ~0.2% of the expected magnitude, respectively. Alternatively, if the magnetization is of the expected order, the typical domain size is limited to ~30 nm for random domains, or ~500 nm for periodic domains.Comment: 8 pages, 7 figures. Submitted to Phys. Rev.
    corecore