217 research outputs found

    Reply to comment by B. Cecconi on "Spectral features of SKR observed by Cassini/RPWS: Frequency bandwidth, flux density and polarization"

    No full text
    International audienceThe main purpose of the paper by Galopeau et al.[2007] was to classify the spectral features of the Saturniankilometric radiation (SKR) starting from three physicalobserved parameters: the frequency bandwidth, the fluxdensity, and the pol arization. We show in the presentresponse that an unsupervised application of arbitrary auto-matic criteria during the data processing (such as a signal-to-noise ratio greater than 23 dB) can totally judge a weaknatural emission as a background noise. As a consequence,such a situation may lead to consideration of only the datapresenting a degree of circular polarization close to 100%and neglect a huge part of the data. Galopeau et al. [2007]considered a phenomenological aspect and gave an estima-tion of the Stokes parameters. This approach leads to firstrecognizing spectral components (flux density and band-width) in the frequency range from 3.5 kHz to 1200 kHz,and then deriving the Stokes parameters for each compo-nent. The Cassini/RPWS instrument provides long-lastingcoverage of radio emissions at Saturn with unprecedentedinstrumental capabilities

    Remote sensing of the Io torus plasma ribbon using natural radio occultation of the Jovian radio emissions

    Get PDF
    International audienceWe study the Jovian hectometric (HOM) emissions recorded by the RPWS (Radio and Plasma Wave Science) experiment onboard the Cassini spacecraft during its Jupiter flyby. We analyze the attenuation band associated with the intensity extinction of HOM radiation. This phenomenon is interpreted as a refraction effect of the Jovian hectometric emission inside the Io plasma torus. This attenuation band was regularly observed during periods of more than 5 months, from the beginning of October 2000 to the end of March 2001. We estimate for this period the variation of the electron density versus the central meridian longitude (CML). We find a clear local time dependence. Hence the electron density was not higher than 5.0 × 104 cm−3 during 2 months, when the spacecraft approached the planet on the dayside. In the late afternoon and evening sectors, the electron density increases to 1.5 × 105 cm−3 and reach a higher value at some specific occasions. Additionally, we show that ultraviolet and hectometric wavelength observations have common features related to the morphology of the Io plasma torus. The maxima of enhancements/attenuations of UV/HOM observations occur close to the longitudes of the tip of the magnetic dipole in the southern hemisphere (20° CML) and in the northern hemisphere (200° CML), respectively. This is a significant indication about the importance of the Jovian magnetic field as a physical parameter in the coupling process between Jupiter and the Io satellite

    Variations of VLF/LF signals observed on the ground and satellite during a seismic activity in Japan region in May–June 2008

    Get PDF
    Signals of two Japanese transmitters (22.2 kHz and 40 kHz) recorded on the ground VLF/LF station in Petropavlovsk-Kamchatsky and on board the DEMETER French satellite have been analyzed during a seismic activity in Japan in May–June 2008. The period of analysis was from 18 April to 27 June. During this time two rather large earthquakes occurred in the north part of Honshu Island – 7 May (<i>M</i>=6.8) and 13 June (<i>M</i>=6.9). The ground and satellite data were processed by a method based on the difference between the real signal in nighttime and the model one. For ground observations a clear decrease in both signals has been found several days before the first earthquake. For the second earthquake anomalies were detected only in JJI signal. The epicenters of earthquakes were in reliable reception zone of 40 kHz signal on board the DEMETER. Signal enhancement above the seismic active region and significant signal intensity depletion in the magnetically conjugate area has been found for satellite observation before the first earthquake. Anomalies in satellite data coincide in time with those in the ground-based observation

    Multi-point ground-based ULF magnetic field observations in Europe during seismic active periods in 2004 and 2005

    Get PDF
    We present the results of ground-based Ultra Low Frequency (ULF) magnetic field measurements observed from June to August 2004 during the Bovec earthquake on 12 July 2004. Further we give information about the seismic activity in the local observatory region for an extended time span 2004 and 2005. ULF magnetic field data are provided by the South European Geomagnetic Array (SEGMA) where the experience and heritage from the CHInese MAGnetometer (CHIMAG) fluxgate magnetometer comes to application. The intensities of the horizontal <I>H</I> and vertical <I>Z</I> magnetic field and the polarization ratio <I>R</I> of the vertical and horizontal magnetic field intensity are analyzed taking into consideration three SEGMA observatories located at different close distances and directions from the earthquake epicenter. We observed a significant increase of high polarization ratios during strong seismic activity at the observatory nearest to the Bovec earthquake epicenter. Apart from indirect ionospheric effects electromagnetic noise could be emitted in the lithosphere due to tectonic effects in the earthquake focus region causing anomalies of the vertical magnetic field intensity. Assuming that the measured vertical magnetic field intensities are of lithospheric origin, we roughly estimate the amplitude of electromagnetic noise in the Earths crust considering an average electrical conductivity of <σ>=10<sup>−3</sup> S/m and a certain distance of the observatory to the earthquake epicenter

    Anomalies in VLF radio signals prior the Abruzzo earthquake (M=6.3) on 6 April 2009

    Get PDF
    Abstract. The VLF/LF radio signals method for studying preseimic activity is applied to the Abruzzo earthquake (M=6.3, 6 April 2009). The data collected by three receivers located in Moscow (Russia), Graz (Austria) and Bari (Italy) at about 3000 km, 1000 km and 500 km from the epicenter were used. The signals received from the Sardinia (20.27 kHz) and the Sicily (45.9 kHz) transmitters, both located in Italy, were compared with those received from the Iceland (37.5 kHz), the Great Britain (19.58 kHz) and the Germany (23.4 kHz) transmitters. The propagation paths of the two Italian transmitters cross the epicentral area (seismic paths) unlike the paths of the other three signals (control paths). Using two different analyses, that are the study of the night-time signal and the research of shifts in the evening terminator times, clear anomalies were revealed 2–8 days before the occurrence of the Abruzzo earthquake in the seismic paths, while no anomalies have been found in the control paths

    A possible radio anomaly observed on the occasion of the MW=6.0 earthquake occurred in Dodecanese islands at the end of January 2020

    Get PDF
    Since 2009, several VLF/LF radio receivers have been installed throughout Europe in order to realize a European radio network for studying the radio precursors of earthquakes, called the INFREP network. The current network has nine VLF/LF receiving stations, two in Romania and Greece, one in Italy, Austria, Portugal, Cyprus, and Serbia. The receivers can measure with 1 min sampling rate the intensity of 10 radio signals in the band VLF (10-50 kHz) and LF (150-300 kHz). The scope of existing transmitters is manifold, e.g. they are used for radio broadcast (LF), for radio- navigation or time signals and mainly for military purposes in the VLF range. At the end of January 2020 an intense seismic crisis occurred in Dodecanese Islands; the main event (Mw= 6.0) occurred on January 30. This seismic activity occurred in the "sensitive" area of the INFREP network. The analysis of the data collected by INFREP receivers has revealed clear anomalies in three VLF signals appearing some days before the main earthquake. The anomalies appear in the trends collected by the Cyprus receiver and the epicenter is inside the 5th Fresnel ellipses defined by transmitters- receiver. Here we report the data analysis and we present in detail the anomalies. The possibility that they are precursors of the quoted earthquake seems significant. Biagi, P.F., Colella, R., Schiavulli, L., Ermini, A., Boudjada, M., Eichelberger, H., Schwingenschuh, K., Katzis, K., Contadakis, M.E., Skeberis, C., Moldovan, I.A. and Bezzeghoud, M. (2019) The INFREP Network: Present Situation and Recent Results. Open Journal of Earthquake Research,8, 101-115. https://doi.org/10.4236/ojer.2019.8200

    Wavelet analysis applied on temporal data sets in order to reveal possible pre-seismic radio anomalies and comparison with the trend of the raw data

    Get PDF
    Since 2009, several radio receivers have been installed throughout Europe in order to realize the INFREP European radio network for studying the VLF (10-50 kHz) and LF (150-300 kHz) radio precursors of earthquakes. Precursors can be related to “anomalies” in the night-time behavior of VLF signals. A suitable method of analysis is the use of the Wavelet spectra. Using the “Morlet function”, the Wavelet transform of a time signal is a complex series that can be usefully represented by its square amplitude, i.e. considering the so-called Wavelet power spectrum. The power spectrum is a 2D diagram that, once properly normalized with respect to the power of the white noise, gives information on the strength and precise time of occurrence of the various Fourier components, which are present in the original time series. The main difference between the Wavelet power spectra and the Fourier power spectra for the time series is that the former identifies the frequency content along the operational time, which cannot be done with the latter. Anomalies are identified as regions of the Wavelet spectrogram characterized by a sudden increase in the power strength. On January 30, 2020 an earthquake with Mw= 6.0 occurred in Dodecanese Islands. The results of the Wavelet analysis carried out on data collected some INFREP receivers is compared with the trends of the raw data. The time series from January 24, 2020 till January 31, 2000 was analyzed. The Wavelet spectrogram shows a peak corresponding to a period of 1 day on the days before January 30. This anomaly was found for signals transmitted at the frequencies 19,58 kHz, 20, 27 kHz, 23,40 kHz with an energy in the peak increasing from 19,58 kHz to 23,40 kHz. In particular, the Powered by TCPDF (www.tcpdf.org) signal at the frequency 19,58 kHz, shows a peak on January 29, while the frequencies 20,27 kHz and 23,40 kHz are characterized by a peak starting on January 28 and continuing to January 29. The results presented in this work shows the perspective use of the Wavelet spectrum analysis as an operational tool for the detection of anomalies in VLF and LF signal potentially related to EQ precursors

    The Graz seismo-electromagnetic VLF facility

    Get PDF
    Abstract. In this paper we describe the Graz seismo-electromagnetic very low frequency (VLF) facility, as part of the European VLF receiver network, together with the scientific objectives and results from two years operation. After a brief technical summary of the present system – with heritage from a predecessor facility – i.e. hardware, software, operational modes and environmental influences, we discuss results from statistical data and scientific events related to terrestrial VLF propagation over Europe

    Ray paths of VLF/LF transmitter radio signals in the seismic Adriatic regions

    Get PDF
    We analyze the radio wave propagations of VLF/LF transmitter signals along subionospheric paths using two different reception systems localized in the Graz seismo-electromagnetic facility (15.43E,47.06N). Those systems allow the simultaneous detection of more than fifteen transmitter signals emitting in the northern (i.e. France, Germany and United Kingdom) and southern (i.e. Italy and Turkey) parts of Europe. In this work, we investigate the transmitter radio wave propagations associated with two earthquakes (EQs) which occurred, at two occasions, in nearly the same Croatian regions (Geo. Long.=16°E; Geo. Lat.=45°N). The first and second EQs happened, respectively, on March 22 and December 29, 2020, with magnitudes Mw equal to 5.4 and 6.4. The use of two complementary reception systems, i.e. INFREP (Biagi et al., Open Journal of Earthquake Research, 8, 2019) and UltraMSK (Schwingenschuh et al., Nat. Hazards Earth Syst. Sci., 11, 2011), and the proximity to the epicenters lead us to characterize the behavior of the transmitter signal amplitudes particularly above the Croatian seismic regions. We analyze the amplitude variation for a given transmitter frequency starting few weeks before the earthquakes occurrences. We discuss the observed anomalies in the transmitter signals which may be considered as precursors due to the ionospheric disturbances of the transmitter ray paths above the earthquakes preparation zones
    corecore