264 research outputs found
The effect of dressing on high-order harmonic generation in vibrating H molecules
We develop the strong-field approximation for high-order harmonic generation
in hydrogen molecules, including the vibrational motion and the laser-induced
coupling of the lowest two Born-Oppenheimer states in the molecular ion that is
created by the initial ionization of the molecule. We show that the field
dressing becomes important at long laser wavelengths (m),
leading to an overall reduction of harmonic generation and modifying the ratio
of harmonic signals from different isotopes.Comment: 23 pages, 11 figures, submitted to PR
Echolocation by Quasiparticles
It is shown that the local density of states (LDOS), measured in an Scanning
Tunneling Microscopy (STM) experiment, at a single tip position contains
oscillations as a function of Energy, due to quasiparticle interference, which
is related to the positions of nearby scatterers. We propose a method of STM
data analysis based on this idea, which can be used to locate the scatterers.
In the case of a superconductor, the method can potentially distinguish the
nature of the scattering by a particular impurity.Comment: 4+ page
Asymptotics of Regulated Field Commutators for Einstein-Rosen Waves
We discuss the asymptotic behavior of regulated field commutators for
linearly polarized, cylindrically symmetric gravitational waves and the
mathematical techniques needed for this analysis. We concentrate our attention
on the effects brought about by the introduction of a physical cut-off in the
study of the microcausality of the model and describe how the different
physically relevant regimes are affected by its presence. Specifically we
discuss how genuine quantum gravity effects can be disentangled from those
originating in the introduction of a regulator.Comment: 9 figures, 19 pages in DIN A4 format. Accepted for publication in
Journal of Mathematical Physic
Entanglement dynamics via coherent-state propagators
The dynamical generation of entanglement in closed bipartite systems is
investigated in the semiclassical regime. We consider a model of two particles,
initially prepared in a product of coherent states, evolving in time according
to a generic Hamiltonian, and derive a formula for the linear entropy of the
reduced density matrix using the semiclassical propagator in the coherent-state
representation. The formula is explicitly written in terms of quantities that
define the stability of classical trajectories of the underlying classical
system. The formalism is then applied to the problem of two nonlinearly coupled
harmonic oscillators and the result is shown to be in remarkable agreement with
the exact quantum measure of entanglement in the short-time regime. An
important byproduct of our approach is a unified semiclassical formula which
contemplates both the coherent-state propagator and its complex conjugate.Comment: 10 page
Edge effects in graphene nanostructures: I. From multiple reflection expansion to density of states
We study the influence of different edge types on the electronic density of
states of graphene nanostructures. To this end we develop an exact expansion
for the single particle Green's function of ballistic graphene structures in
terms of multiple reflections from the system boundary, that allows for a
natural treatment of edge effects. We first apply this formalism to calculate
the average density of states of graphene billiards. While the leading term in
the corresponding Weyl expansion is proportional to the billiard area, we find
that the contribution that usually scales with the total length of the system
boundary differs significantly from what one finds in semiconductor-based,
Schr\"odinger type billiards: The latter term vanishes for armchair and
infinite mass edges and is proportional to the zigzag edge length, highlighting
the prominent role of zigzag edges in graphene. We then compute analytical
expressions for the density of states oscillations and energy levels within a
trajectory based semiclassical approach. We derive a Dirac version of
Gutzwiller's trace formula for classically chaotic graphene billiards and
further obtain semiclassical trace formulae for the density of states
oscillations in regular graphene cavities. We find that edge dependent
interference of pseudospins in graphene crucially affects the quantum spectrum.Comment: to be published in Phys. Rev.
Landau functions for non-interacting bosons
We discuss the statistics of Bose-Einstein condensation (BEC) in a canonical
ensemble of N non-interacting bosons in terms of a Landau function L_N^{BEC}
(q) defined by the logarithm of the probability distribution of the order
parameter q for BEC. We also discuss the corresponding Landau function for
spontaneous symmetry breaking (SSB), which for finite N should be distinguished
from L_N^{BEC}. Only for intinite N BEC and SSB can be described by the same
Landau function which depends on the dimensionality and on the form of the
external potential in a surprisingly complex manner. For bosons confined by a
three-dimensional harmonic trap the Landau function exhibits the usual behavior
expected for continuous phase transitions.Comment: 4 pages, 4 figures; final version to appear as a rapid communication
in Physical Review A. Abstract modified and typos correcte
Strong-field dipole resonance. I. Limiting analytical cases
We investigate population dynamics in N-level systems driven beyond the
linear regime by a strong external field, which couples to the system through
an operator with nonzero diagonal elements. As concrete example we consider the
case of dipolar molecular systems. We identify limiting cases of the
Hamiltonian leading to wavefunctions that can be written in terms of ordinary
exponentials, and focus on the limits of slowly and rapidly varying fields of
arbitrary strength. For rapidly varying fields we prove for arbitrary that
the population dynamics is independent of the sign of the projection of the
field onto the dipole coupling. In the opposite limit of slowly varying fields
the population of the target level is optimized by a dipole resonance
condition. As a result population transfer is maximized for one sign of the
field and suppressed for the other one, so that a switch based on flopping the
field polarization can be devised. For significant sign dependence the
resonance linewidth with respect to the field strength is small. In the
intermediate regime of moderate field variation, the integral of lowest order
in the coupling can be rewritten as a sum of terms resembling the two limiting
cases, plus correction terms for N>2, so that a less pronounced sign-dependence
still exists.Comment: 34 pages, 1 figur
A complex ray-tracing tool for high-frequency mean-field flow interaction effects in jets
This paper presents a complex ray-tracing tool for the calculation of high-frequency Green’s functions in 3D mean field jet flows. For a generic problem, the ray solution suffers from three main deficiencies: multiplicity of solutions, singularities at caustics, and the determining of complex solutions. The purpose of this paper is to generalize, combine and apply existing stationary media methods to moving media scenarios. Multiplicities are dealt with using an equivalent two-point boundary-value problem, whilst non-uniformities at caustics are corrected using diffraction catastrophes. Complex rays are found using a combination of imaginary perturbations, an assumption of caustic stability, and analytic continuation of the receiver curve. To demonstrate this method, the ray tool is compared against a high-frequency modal solution of Lilley’s equation for an off-axis point source. This solution is representative of high-frequency source positions in real jets and is rich in caustic structures. A full utilization of the ray tool is shown to provide excellent results<br/
Dynamic interference of photoelectrons produced by high-frequency laser pulses
The ionization of an atom by a high-frequency intense laser pulse, where the
energy of a single-photon is sufficient to ionize the system, is investigated
from first principles. It is shown that as a consequence of an AC Stark effect
in the continuum, the energy of the photoelectron follows the envelope of the
laser pulse. This is demonstrated to result in strong dynamic interference of
the photoelectrons of the same kinetic energy emitted at different times.
Numerically exact computations on the hydrogen atom demonstrate that the
dynamic interference spectacularly modifies the photoionization process and is
prominently manifested in the photoelectron spectrum by the appearance of a
distinct multi-peak pattern. The general theory is shown to be well
approximated by explicit analytical expressions which allow for a transparent
understanding of the discovered phenomena and for making predictions on the
dependence of the measured spectrum on the properties of the pulse.Comment: 5 figure
Resonances and the thermonuclear reaction rate
We present an approximate analytic expression for thermonuclear reaction rate
of charged particles when the cross section contains a single narrow or wide
resonance described by a Breit-Wigner shape. The resulting expression is
uniformly valid as the effective energy and resonance energy coalesce. We use
our expressions to calculate the reaction rate for
C(p,)N.Comment: 4 pages, 1 figure, presented at the VIII International Conference on
Nucleus-Nucleus in Moscow (Russia) on June 17-21, 200
- …