18 research outputs found

    Boundary Conditions for the Einstein Evolution System

    Get PDF
    New boundary conditions are constructed and tested numerically for a general first-order form of the Einstein evolution system. These conditions prevent constraint violations from entering the computational domain through timelike boundaries, allow the simulation of isolated systems by preventing physical gravitational waves from entering the computational domain, and are designed to be compatible with the fixed-gauge evolutions used here. These new boundary conditions are shown to be effective in limiting the growth of constraints in 3D non-linear numerical evolutions of dynamical black-hole spacetimes.Comment: 21 pages, 12 figures, submitted to PR

    Optimal Constraint Projection for Hyperbolic Evolution Systems

    Get PDF
    Techniques are developed for projecting the solutions of symmetric hyperbolic evolution systems onto the constraint submanifold (the constraint-satisfying subset of the dynamical field space). These optimal projections map a field configuration to the ``nearest'' configuration in the constraint submanifold, where distances between configurations are measured with the natural metric on the space of dynamical fields. The construction and use of these projections is illustrated for a new representation of the scalar field equation that exhibits both bulk and boundary generated constraint violations. Numerical simulations on a black-hole background show that bulk constraint violations cannot be controlled by constraint-preserving boundary conditions alone, but are effectively controlled by constraint projection. Simulations also show that constraint violations entering through boundaries cannot be controlled by constraint projection alone, but are controlled by constraint-preserving boundary conditions. Numerical solutions to the pathological scalar field system are shown to converge to solutions of a standard representation of the scalar field equation when constraint projection and constraint-preserving boundary conditions are used together.Comment: final version with minor changes; 16 pages, 14 figure

    Stability and Convergence of Product Formulas for Operator Matrices

    Get PDF
    We present easy to verify conditions implying stability estimates for operator matrix splittings which ensure convergence of the associated Trotter, Strang and weighted product formulas. The results are applied to inhomogeneous abstract Cauchy problems and to boundary feedback systems.Comment: to appear in Integral Equations and Operator Theory (ISSN: 1420-8989

    3D simulations of linearized scalar fields in Kerr spacetime

    Get PDF
    We investigate the behavior of a dynamical scalar field on a fixed Kerr background in Kerr-Schild coordinates using a 3+1 dimensional spectral evolution code, and we measure the power-law tail decay that occurs at late times. We compare evolutions of initial data proportional to f(r) Y_lm(theta,phi) where Y_lm is a spherical harmonic and (r,theta,phi) are Kerr-Schild coordinates, to that of initial data proportional to f(r_BL) Y_lm(theta_BL,phi), where (r_BL,theta_BL) are Boyer-Lindquist coordinates. We find that although these two cases are initially almost identical, the evolution can be quite different at intermediate times; however, at late times the power-law decay rates are equal.Comment: 12 pages, 9 figures, revtex4. Major revision: added figures, added subsection on convergence, clarified discussion. To appear in Phys Rev

    On domain decomposition and subdomain iteration

    No full text

    Waveform relaxation as a dynamical system

    No full text

    Waveform relaxation as a dynamical system

    No full text
    In this paper the properties of waveform relaxation are studied when applied to the dynamical system generated by an autonomous ordinary differential equation. In particular, the effect of the waveform relaxation on the invariant sets of the flow is analysed. Windowed waveform relaxation is studied, whereby the iterative technique is applied on successive time intervals of length T and a fixed, finite, number of iterations taken on each window. This process does not generate a dynamical system on R+ since two different applications of the waveform algorithm over different time intervals do not, in general, commute. In order to generate a dynamical system it is necessary to consider the time T map generated by the relaxation process. This is done, and C^1-closeness of the resulting map to the time T map of the underlying ordinary differential equation is established. Using this, various results from the theory of dynamical systems are applied, and the results discussed
    corecore