74 research outputs found

    Mistletoe lectin is not the only cytotoxic component in fermented preparations of Viscum album from white fir (Abies pectinata)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preparations of mistletoe (<it>Viscum album</it>) are the form of cancer treatment that is most frequently used in the complementary medicine. Previous work has shown that these preparations are able to exert cytotoxic effects on carcinoma cells, the extent of which might be influenced by the host tree species and by the content of mistletoe lectin.</p> <p>Methods</p> <p>Using colorimetric assays, we have now compared the cytotoxic effects of <it>Viscum album </it>preparations (VAPs) obtained from mistletoe growing on oak (<it>Quercus robur </it>and <it>Q. petraea</it>, VAP-Qu), apple tree (<it>Malus domestica</it>,, VAP-M), pine (<it>Pinus sylvestris</it>, VAP-P) or white fir (<it>Abies pectinata</it>, VAP-A), on the <it>in vitro </it>growth of breast and bladder carcinoma cell lines. While MFM-223, KPL-1, MCF-7 and HCC-1937 were the breast carcinoma cell lines chosen, the panel of tested bladder carcinoma cells comprised the T-24, TCC-SUP, UM-UC-3 and J-82 cell lines.</p> <p>Results</p> <p>Each of the VAPs inhibited cell growth, but the extent of this inhibition differed with the preparation and with the cell line. The concentrations of VAP-Qu, VAP-M and VAP-A which led to a 50 % reduction of cell growth (IC<sub>50</sub>) varied between 0.6 and 0.03 mg/ml. Higher concentrations of VAP-P were required to obtain a comparable effect. Purified mistletoe lectin I (MLI) led to an inhibition of breast carcinoma cell growth at concentrations lower than those of VAPs, but the sensitivity towards purified MLI did not parallel that towards VAPs. Bladder carcinoma cells were in most cases more sensitive to VAPs treatment than breast carcinoma cells. The total mistletoe lectin content was very high in VAP-Qu (54 ng/mg extract), intermediate in VAP-M (25 ng/mg extract), and very low in VAP-P (1.3 ng/mg extract) and in VAP-A (1 ng/mg extract). As to be expected from the low content of mistletoe lectin, VAP-P led to relatively weak cytotoxic effects. Most remarkably, however, the lectin-poor VAP-A revealed a cytotoxic effect comparable to, or even stronger than, that of the lectin-rich VAP-Qu, on all tested bladder and breast carcinoma cell lines.</p> <p>Conclusion</p> <p>The results suggest the existence of cytotoxic components other than mistletoe lectin in VAP-A and reveal an unexpected potential of this preparation for the treatment of breast and bladder cancer.</p

    Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes

    Full text link
    Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attraction artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported relationships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of substitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolving deep relationships.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147147/1/tax25065680.pd

    AusTraits, a curated plant trait database for the Australian flora

    Get PDF
    We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge

    Introduction to the Groups Treated in this Volume

    No full text

    Mathematical modeling and control of population systems: Applications in biological pest control

    No full text
    The aim of this paper is to apply methods from optimal control theory, and from the theory of dynamic systems to the mathematical modeling of biological pest control. The linear feedback control problem for nonlinear systems has been formulated in order to obtain the optimal pest control strategy only through the introduction of natural enemies. Asymptotic stability of the closed-loop nonlinear Kolmogorov system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation, thus guaranteeing both stability and optimality. Numerical simulations for three possible scenarios of biological pest control based on the Lotka-Volterra models are provided to show the effectiveness of this method. (c) 2007 Elsevier B.V. All rights reserved

    Female flowers and inflorescences of Didymelaceae

    No full text

    Structure, development and evolution of the androecium in Adansonieae (core Bombacoideae, Malvaceae s.l.)

    No full text
    Androecium development and vasculature were studied in nine species of the Adansonieae clade (core Bombacoideae, Malvaceae s.l.). In early androecium development either distinct pentagonal androecial ring walls or five common petal/androecium primordia are present. Ring walls give rise to five antepetalous and five alternipetalous primary androecial primordia. Common primordia divide into peripheral petal primordia and antepetalous primary androecial primordia. Antepetalous primary androecial primordia split anticlinally into ten primordia-halves, on which secondary androecial primordia are initiated in a centrifugal succession. Androecial lobes are formed by fusion of an alternipetalous primary androecial primordium and its two neighbouring antepetalous primary primordia-halves, a pattern that also occurs in other Malvatheca. Later, tertiary androecial primordia are formed by the subdivision of secondary androecial primordia (except in Adansonia and Ceiba). Each tertiary primordium differentiates into a two-locular androecial unit. At anthesis these two-locular androecial units are often present in pairs, corresponding to the two halves of the same secondary androecial primordium. Androecium development and vasculature imply that the alternipetalous androecial sectors have been reduced in Bombacoideae, a tendency that is shared with other subfamilies of Malvaceae.275416716991National Science Foundation (NSF) [DEB 9876070, 0416096, BSF-8800193]Forschungskommission of the University of Zurich, SwitzerlandSwedish Research CouncilNational Science Foundation (NSF) [DEB 9876070, 0416096, BSF-8800193
    corecore