111 research outputs found

    Genomic epidemiological analysis identifies high relapse among individuals with recurring tuberculosis and provides evidence of household recent TB transmission in Ghana

    Get PDF
    OBJECTIVE: We investigated the cause of recurring tuberculosis (rcTB) among pulmonary TB participants recruited from a prospective population-based study conducted between July 2012 and December 2015. METHODS: Mycobacterium tuberculosis complex isolates obtained from rcTB cases were characterized by standard mycobacterial genotyping tools in addition to whole genome sequencing, followed by phylogenetic analysis to assess strain relatedness. RESULTS: A greater proportion (58.3%, 21/36) of individuals with rcTB episodes had TB recurrence within 12 months post treatment. Only 19.4% (7/36) of participants with rcTB harbored a strain with isoniazid (INH) resistance at baseline of which 29% (2/7) were additionally resistant to rifampicin. However, 27.8% (10/36) harbored an INH resistant strain upon recurring of which 40% (4/10) were MDR-TB strains. Recurrent TB was attributed to relapse (same strain) in 75.0% (27/36) of participants with 25.0% (9/36) attributed to re-infection. CONCLUSION: Our findings indicate that unresolved previous infection due to inadequate treatment may be the major cause of rcTB

    Statistical evaluation of a new resistance model for cold-formed stainless steel cross-sections subjected to web crippling

    Get PDF
    This paper presents a statistical evaluation according to Annex D of EN 1990 (2002) of a new resistance function for web crippling design of cold-formed stainless steel cross-sections. This resistance function was derived by Bock et al. (2013) through the use of carefully validated numerical models with the aim to propose a design expression for stainless steel sections, which are currently designed following the provisions for cold-formed carbon steel sections given in EN 1993-1-3 (2006). Although it was shown that the proposed design equation is appropriate for application to various stainless steels, the statistical uncertainties in material properties that the different types of stainless steels exhibit require an assessment of various partial safety factors. The statistical assessment showed that the proposed resistance function by Bock et al. (2013) requires adjustment to satisfy the safety level set out in EN 1993-1-4 (2006); A recalibration is performed herein. The web crippling design provisions given in EN 1993-1-3 (2006) and SEI/ASCE 8-02 (2002) American standard for application to stainless steel are also statistically evaluated herein. Comparison with test and numerical data showed that the predictions of the recalibrated resistance function are better suited and consistent than existing design provisionsResearch Fund for Coal and Stee

    Tribological behavior of 316L stainless steel reinforced with CuCoBe + diamond composites by laser sintering and hot pressing: a comparative statistical study

    Get PDF
    The aim of this work was to perform a statistical analysis in order to assess how the tribological properties of a laser textured 316L stainless steel reinforced with CuCoBe - diamond composites are affected by diamond particles size, type of technology (laser sintering and hot pressing) and time of tribological test. The analysis started with the description of all response variables. Then, by using IBM® SPSS software, the Friedman’s test was used to compare how the coefficient of friction varied among samples in five-time points. From this test, results showed that there was no statistically significant difference in the coefficient of friction mean values over the selected time points. Then, the two-samples Kolmogorov-Smirnov (K-S) test was used to test the effect of the diamond particles size and the type of technology on the mean of the coefficient of friction over time. The results showed that, for both sintering techniques, the size of the diamond particles significantly affected the values of the coefficient of friction, whereas no statistical differences were found between the tested sintering techniques. Also, the two-way ANOVA test was used to evaluate how these factors influence the specific wear rate, which conducted to the same conclusions drawn for the previous test. The main conclusion was that the coefficient of friction and the specific wear rate were statistically affected by the diamond particles size, but not by the sintering techniques used in this work.This work was supported by FCT national funds, under the national support to R&D units grant, through the reference projects UIDB/04436/2020 and UIDP/04436/2020. Additionally, this work was supported by FCT with the reference projects UIDB/00319/2020 and PTDC/CTM-COM/30416/2017

    Analysis of Allogenicity of Mesenchymal Stem Cells in Engraftment and Wound Healing in Mice

    Get PDF
    Studies have shown that allogeneic (allo-) bone marrow derived mesenchymal stem cells (BM-MSCs) may enhance tissue repair/regeneration. However, recent studies suggest that immune rejection may occur to allo-MSCs leading to reduced engraftment. In this study, we compared allo-BM-MSCs with syngeneic BM-MSCs or allo-fibroblasts in engraftment and effect in wound healing. Equal numbers of GFP-expressing allo-BM-MSCs, syngeneic BM-MSCs or allo-fibroblasts were implanted into excisional wounds in GFP-negative mice. Quantification of GFP-expressing cells in wounds at 7, 14 and 28 days indicated similar amounts of allogeneic or syngeneic BM-MSCs but significantly reduced amounts of allo-fibroblasts. With healing progression, decreasing amounts of allogeneic and syngeneic BM-MSCs were found in the wound; however, the reduction was more evident (2 fold) in allo-fibroblasts. Similar effects in enhancing wound closure were found in allogeneic and syngeneic BM-MSCs but not in allo-fibroblasts. Histological analysis showed that allo-fibroblasts were largely confined to the injection sites while allo-BM-MSCs had migrated into the entire wound. Quantification of inflammatory cells in wounds showed that allo-fibroblast- but not allo-BM-MSC-treated wounds had significantly increased CD45+ leukocytes, CD3+ lymphocytes and CD8+ T cells. Our study suggests that allogeneic BM-MSCs exhibit ignorable immunogenicity and are equally efficient as syngeneic BM-MSCs in engraftment and in enhancing wound healing

    Comparative characterization of mesenchymal stem cells from eGFP transgenic and non-transgenic mice

    Get PDF
    Abstract Background Adipose derived- and bone marrow-derived murine mesenchymal stem cells (mMSCs) may be used to study stem cell properties in an in vivo setting for the purposes of evaluating therapeutic strategies that may have clinical applications in the future. If these cells are to be used for transplantation, the question arises of how to track the administered cells. One solution to this problem is to transplant cells with an easily identifiable genetic marker such as enhanced green fluorescent protein (eGFP). This protein is fluorescent and therefore does not require a chemical substrate for identification and can be visualized in living cells. This study seeks to characterize and compare adipose derived- and bone marrow-derived stem cells from C57Bl/6 mice and eGFP transgenic C57Bl/6 mice. Results The expression of eGFP does not appear to affect the ability to differentiate along adipogenic or osteogenic lineages; however it appears that the tissue of origin can influence differentiation capabilities. The presence of eGFP had no effect on cell surface marker expression, and mMSCs derived from both bone marrow and adipose tissue had similar surface marker profiles. There were no significant differences between transgenic and non-transgenic mMSCs. Conclusion Murine adipose derived and bone marrow derived mesenchymal stem cells from non-transgenic and eGFP transgenic C57Bl/6 mice have very similar characterization profiles. The availability of mesenchymal stem cells stably expressing a genetic reporter has important applications for the advancement of stem cell research.</p

    Bone Marrow-Derived Progenitor Cells Augment Venous Remodeling in a Mouse Dorsal Skinfold Chamber Model

    Get PDF
    The delivery of bone marrow-derived cells (BMDCs) has been widely used to stimulate angiogenesis and arteriogenesis. We identified a progenitor-enriched subpopulation of BMDCs that is able to augment venular remodeling, a generally unexplored area in microvascular research. Two populations of BMDCs, whole bone marrow (WBM) and Lin−/Sca-1+ progenitor cells, were encapsulated in sodium alginate and delivered to a mouse dorsal skinfold chamber model. Upon observation that encapsulated Sca-1+ progenitor cells enhance venular remodeling, the cells and tissue were analyzed on structural and molecular levels. Venule walls were thickened and contained more nuclei after Sca-1+ progenitor cell delivery. In addition, progenitors expressed mRNA transcript levels of chemokine (C-X-C motif) ligand 2 (CXCL2) and interferon gamma (IFNγ) that are over 5-fold higher compared to WBM. Tissues that received progenitors expressed significantly higher protein levels of vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1), and platelet derived growth factor-BB (PDGF-BB) compared to tissues that received an alginate control construct. Nine days following cell delivery, tissue from progenitor recipients contained 39% more CD45+ leukocytes, suggesting that these cells may enhance venular remodeling through the modulation of the local immune environment. Results show that different BMDC populations elicit different microvascular responses. In this model, Sca-1+ progenitor cell-derived CXCL2 and IFNγ may mediate venule enlargement via modulation of the local inflammatory environment

    Software quality management improvement through mentoring: an exploratory study from GSD projects

    Get PDF
    Proceeding of: OTM 2011 Workshops: Confederated InternationalWorkshops and Posters: EI2N+NSF ICE, ICSP+INBAST, ISDE, ORM, OTMA, SWWS+MONET+SeDeS, and VADER 2011, Hersonissos, Crete, Greece, October 17-21, 2011Software Quality Management (SQM) is a set of processes and procedures designed to assure the quality of software artifacts along with their development process. In an environment in which software development is evolving to a globalization, SQM is seen as one of its challenges. Global Software Development is a way to develop software across nations, continents, cultures and time zones. The aim of this paper is to detect if mentoring, one of the lead personnel development tools, can improve SQM of projects developed under GSD. The results obtained in the study reveal that the influence of mentoring on SQM is just temperate

    Erythroid Promoter Confines FGF2 Expression to the Marrow after Hematopoietic Stem Cell Gene Therapy and Leads to Enhanced Endosteal Bone Formation

    Get PDF
    Fibroblast growth factor-2 (FGF2) has been demonstrated to be a promising osteogenic factor for treating osteoporosis. Our earlier study shows that transplantation of mouse Sca-1+ hematopoietic stem/progenitor cells that are engineered to express a modified FGF2 leads to considerable endosteal/trabecular bone formation, but it also induces adverse effects like hypocalemia and osteomalacia. Here we report that the use of an erythroid specific promoter, β-globin, leads to a 5-fold decrease in the ratio of serum FGF2 to the FGF2 expression in the marrow cavity when compared to the use of a ubiquitous promoter spleen focus-forming virus (SFFV). The confined FGF2 expression promotes considerable trabeculae bone formation in endosteum and does not yield anemia and osteomalacia. The avoidance of anemia in the mice that received Sca1+ cells transduced with FGF2 driven by the β-globin promoter is likely due to attenuation of high-level serum FGF2-mediated stem cell mobilization observed in the SFFV-FGF2 animals. The prevention of osteomalacia is associated with substantially reduced serum Fgf23/hypophosphatemia, and less pronounced secondary hyperparathyroidism. Our improved stem cell gene therapy strategy represents one step closer to FGF2-based clinical therapy for systemic skeletal augmentation

    Efficient Enrichment of Hepatic Cancer Stem-Like Cells from a Primary Rat HCC Model via a Density Gradient Centrifugation-Centered Method

    Get PDF
    Background: Because few definitive markers are available for hepatic cancer stem cells (HCSCs), based on physical rather than immunochemical properties, we applied a novel method to enrich HCSCs. Methodology: After hepatic tumor cells (HTCs) were first isolated from diethylinitrosamine-induced F344 rat HCC model using percoll discontinuous gradient centrifugation (PDGC) and purified via differential trypsinization and differential attachment (DTDA), they were separated into four fractions using percoll continuous gradient centrifugation (PCGC) and sequentially designated as fractions I–IV (FI–IV). Morphological characteristics, mRNA and protein levels of stem cell markers, proliferative abilities, induced differentiation, in vitro migratory capacities, in vitro chemo-resistant capacities, and in vivo malignant capacities were determined for the cells of each fraction. Findings: As the density of cells increased, 22.18%, 11.62%, 4.73 % and 61.47 % of primary cultured HTCs were segregated in FI–FIV, respectively. The cells from FIII (density between 1.041 and 1.062 g/ml) displayed a higher nuclear-cytoplasmic ratio and fewer organelles and expressed higher levels of stem cell markers (AFP, EpCAM and CD133) than cells from other fractions (P,0.01). Additionally, in vitro, the cells from FIII showed a greater capacity to self-renew, differentiate into mature HTCs, transit across membranes, close scratches, and carry resistance to chemotherapy than did cells from any other fraction; in vivo, injection of only 1610 4 cells from FIII could generate tumors not only in subcutaneous tissue but also in th
    corecore