641 research outputs found

    Structure of sticky-hard-sphere random aggregates: The viewpoint of contact coordination and tetrahedra

    Get PDF
    International audienceWe study more than 10 4 random aggregates of 10 6 monodisperse sticky hard spheres each, generated by various static algorithms. Their packing fraction varies from 0.370 up to 0.593. These aggregates are shown to be based on two types of disordered structures: random regular polytetrahedra and random aggregates, the former giving rise to δ peaks on pair distribution functions. Distortion of structural (Delaunay) tetrahedra is studied by two parameters, which show some similarities and some differences in terms of overall tendencies. Isotropy of aggregates is characterized by the nematic order parameter. The overall structure is then studied by distinguishing spheres in function of their contact coordination number (CCN). Distributions of average CCN around spheres of a given CCN value show trends that depend on packing fraction and building algorithms. The radial dependence of the average CCN turns out to be dependent upon the CCN of the central sphere and shows discontinuities that resemble those of the pair distribution function. Moreover, it is shown that structural details appear when the CCN is used as pseudochemical parameter, such as various angular distribution of bond angles, partial pair distribution functions, Ashcroft-Langreth and Bhatia-Thornton partial structure factors. These allow distinguishing aggregates with the same values of packing fraction or average tetrahedral distortion or even similar global pair distribution function, indicative of the great interest of paying attention to contact coordination numbers to study more precisely the structure of random aggregates

    Colonization capacity and serum bactericidal activity of Haemophilus parasuis thy mutants

    Get PDF
    The bacterial thyA gene encodes the enzyme thymidylate synthase, which is essential for dTMP synthesis and, consequently, for DNA replication. In this work, a Haemophilus parasuis thyA mutant was constructed in order to analyze its colonization characteristics and its capacity to generate serum bactericidal activity in infected guinea pigs. The data showed that colonization by the H. parasuis thyA mutant was much less than that of the wild-type strain. Nevertheless, the mutant generated a strong immunogenic response in the host, as detected by measuring serum bactericidal activity. [Int Microbiol 2006; 9(4):297-301

    Origin of the mobile di-hydro-pteroate synthase gene determining sulfonamide resistance in clinical isolates

    Get PDF
    Sulfonamides are synthetic chemotherapeutic agents that work as competitive inhibitors of the di-hydro-pteroate synthase (DHPS) enzyme, encoded by the folP gene. Resistance to sulfonamides is widespread in the clinical setting and predominantly mediated by plasmid- and integron-borne sul1-3 genes encoding mutant DHPS enzymes that do not bind sulfonamides. In spite of their clinical importance, the genetic origin of sul1-3 genes remains unknown. Here we analyze sul genes and their genetic neighborhoods to uncover sul signature elements that enable the elucidation of their genetic origin. We identify a protein sequence Sul motif associated with sul-encoded proteins, as well as consistent association of a phosphoglucosamine mutase gene (glmM) with the sul2 gene. We identify chromosomal folP genes bearing these genetic markers in two bacterial families: the Rhodobiaceae and the Leptospiraceae. Bayesian phylogenetic inference of FolP/Sul and GlmM protein sequences clearly establishes that sul1-2 and sul3 genes originated as a mobilization of folP genes present in, respectively, the Rhodobiaceae and the Leptospiraceae, and indicate that the Rhodobiaceae folP gene was transferred from the Leptospiraceae. Analysis of %GC content in folP/sul gene sequences supports the phylogenetic inference results and indicates that the emergence of the Sul motif in chromosomally encoded FolP proteins is ancient and considerably predates the clinical introduction of sulfonamides. In vitro assays reveal that both the Rhodobiaceae and the Leptospiraceae, but not other related chromosomally encoded FolP proteins confer resistance in a sulfonamide-sensitive Escherichia coli background, indicating that the Sul motif is associated with sulfonamide resistance. Given the absence of any known natural sulfonamides targeting DHPS, these results provide a novel perspective on the emergence of resistance to synthetic chemotherapeutic agents, whereby preexisting resistant variants in the vast bacterial pangenome may be rapidly selected for and disseminated upon the clinical introduction of novel chemotherapeuticals

    Heterologous protective immunization elicited in mice by Pasteurella multocida fur ompH

    Get PDF
    Different strategies have been developed to produce vaccines against Pasteurella multocida. The approach described herein involves overexpression on the bacterial cell surface of Fur-regulated IROMPs (iron-regulated outer-membrane proteins). Accordingly, the ability of fur mutants to promote heterologous protection was examined in a Swiss mouse animal model. Two fur mutants derived from P. multocida were isolated, one of which was also defective in the OmpH protein. In mice challenged with virulent P. multocida, outer-membrane protein (OMP) extracts of fur cells conferred the same protection as obtained with wild-type cells grown in iron-depleted medium. Total protection was achieved with 40 ÎĽg of OMP extract from the fur ompH mutant. Mice administered heat-inactivated fur ompH cells were 60% cross-protected. The presence of a galE mutation in these cells did not further increase the protection level. Additionally, cell disruption by sonication provoked a higher level of protection than conferred by heat-treated cells. Taken together, the results showed that P. multocida fur ompH cells offer a simple and suitable approach for cross-protecting animals against infection with P. multocida. [Int Microbiol 2008; 11(1):17-24

    Exploration into the origins and mobilization of di-hydrofolate reductase genes and the emergence of clinical resistance to trimethoprim

    Get PDF
    Trimethoprim is a synthetic antibacterial agent that targets folate biosynthesis by competitively binding to the di-hydrofolate reductase enzyme (DHFR). Trimethoprim is often administered synergistically with sulfonamide, another chemotherapeutic agent targeting the di-hydropteroate synthase (DHPS) enzyme in the same pathway. Clinical resistance to both drugs is widespread and mediated by enzyme variants capable of performing their biological function without binding to these drugs. These mutant enzymes were assumed to have arisen after the discovery of these synthetic drugs, but recent work has shown that genes conferring resistance to sulfonamide were present in the bacterial pangenome millions of years ago. Here, we apply phylogenetics and comparative genomics methods to study the largest family of mobile trimethoprim-resistance genes (dfrA). We show that most of the dfrA genes identified to date map to two large clades that likely arose from independent mobilization events. In contrast to sulfonamide resistance (sul) genes, we find evidence of recurrent mobilization in dfrA genes. Phylogenetic evidence allows us to identify novel dfrA genes in the emerging pathogen , and we confirm their resistance phenotype in vitro. We also identify a cluster of dfrA homologues in cryptic plasmid and phage genomes, but we show that these enzymes do not confer resistance to trimethoprim. Our methods also allow us to pinpoint the chromosomal origin of previously reported dfrA genes, and we show that many of these ancient chromosomal genes also confer resistance to trimethoprim. Our work reveals that trimethoprim resistance predated the clinical use of this chemotherapeutic agent, but that novel mutations have likely also arisen and become mobilized following its widespread use within and outside the clinic. Hence, this work confirms that resistance to novel drugs may already be present in the bacterial pangenome, and stresses the importance of rapid mobilization as a fundamental element in the emergence and global spread of resistance determinants

    Classical Limit of Demagnetization in a Field Gradient

    Full text link
    We calculate the rate of decrease of the expectation value of the transverse component of spin for spin-1/2 particles in a magnetic field with a spatial gradient, to determine the conditions under which a previous classical description is valid. A density matrix treatment is required for two reasons. The first arises because the particles initially are not in a pure state due to thermal motion. The second reason is that each particle interacts with the magnetic field and the other particles, with the latter taken to be via a 2-body central force. The equations for the 1-body Wigner distribution functions are written in a general manner, and the places where quantum mechanical effects can play a role are identified. One that may not have been considered previously concerns the momentum associated with the magnetic field gradient, which is proportional to the time integral of the gradient. Its relative magnitude compared with the important momenta in the problem is a significant parameter, and if their ratio is not small some non-classical effects contribute to the solution. Assuming the field gradient is sufficiently small, and a number of other inequalities are satisfied involving the mean wavelength, range of the force, and the mean separation between particles, we solve the integro- partial differential equations for the Wigner functions to second order in the strength of the gradient. When the same reasoning is applied to a different problem with no field gradient, but having instead a gradient to the z-component of polarization, the connection with the diffusion coefficient is established, and we find agreement with the classical result for the rate of decrease of the transverse component of magnetization.Comment: 22 pages, no figure

    Plant-associated microbiota as a source of antagonistic bacteria against the phytopathogen Erwinia amylovora

    Get PDF
    Control of bacterial plant diseases is a major concern, as they affect economically important species and spread easily, such as the case of fire blight of rosaceous caused by Erwinia amylovora. In the search for alternatives to the use of agrochemicals and antibiotics, this work presents a screening of natural bacterial antagonists of this relevant and devastating phytopathogen. We recovered bacterial isolates from different plant tissues and geographical origins and then selected those with the strongest ability to reduce fire blight symptoms ex vivo and remarkable in vitro antagonistic activity against E. amylovora. None of them elicited a hypersensitivity reaction in tobacco leaves, most produced several hydrolytic enzymes and presented other biocontrol and/or plant growth-promoting activities, such as siderophore production and phosphate solubilization. These isolates, considered as biocontrol candidates, were identified by 16S rRNA sequencing as Pseudomonas rhizosphaerae, Curtobacterium flaccumfaciens, Enterobacter cancerogenus, Pseudomonas azotoformans, Rosenbergiella epipactidis and Serratia plymuthica. This is the first time that the last five bacterial species are reported to have biocontrol potential against E. amylovora

    Importance of twitching and surface-associated motility in the virulence of Acinetobacter baumannii

    Get PDF
    Acinetobacter baumannii is a pathogen of increasing clinical importance worldwide, especially given its ability to readily acquire resistance determinants. Motile strains of this bacterium can move by either or both of two types of motility: (i) twitching, driven by type IV pili, and (ii) surface-associated motility, an appendage-independent form of movement. A. baumannii strain MAR002 possesses both twitching and surface-associated motility. In this study, we isolated spontaneous rifampin-resistant mutants of strain MAR002 in which point mutations in the rpoB gene were identified that resulted in an altered motility pattern. Transcriptomic analysis of mutants lacking twitching, surface-associated motility, or both led to the identification of deregulated genes within each motility phenotype, based on their level of expression and their biological function. Investigations of the corresponding knockout mutants revealed several genes involved in the motility of A. baumannii strain MAR002, including two involved in twitching (encoding a minor pilin subunit and an RND [resistance nodulation division] component), one in surface-associated motility (encoding an amino acid permease), and eight in both (encoding RND and ABC components, the energy transducer TonB, the porin OprD, the T6SS component TagF, an IclR transcriptional regulator, a PQQ-dependent sugar dehydrogenase, and a putative pectate lyase). Virulence assays showed the reduced pathogenicity of mutants with impairments in both types of motility or in surface-associated motility alone. By contrast, the virulence of twitching-affected mutants was not affected. These results shed light on the key role of surface-associated motility and the limited role of twitching in the pathogenicity of A. baumannii
    • …
    corecore