26,478 research outputs found
Probing the wind-wind collision in Gamma Velorum with high-resolution Chandra X-ray spectroscopy: evidence for sudden radiative braking and non-equilibrium ionization
We present a new analysis of an archived Chandra HETGS X-ray spectrum of the
WR+O colliding wind binary Gamma Velorum. The spectrum is dominated by emission
lines from astrophysically abundant elements: Ne, Mg, Si, S and Fe. From a
combination of broad-band spectral analysis and an analysis of line flux ratios
we infer a wide range of temperatures in the X-ray emitting plasma (~4-40 MK).
As in the previously published analysis, we find the X-ray emission lines are
essentially unshifted, with a mean FWHM of 1240 +/- 30 km/s. Calculations of
line profiles based on hydrodynamical simulations of the wind-wind collision
predict lines that are blueshifted by a few hundred km/s. The lack of any
observed shift in the lines may be evidence of a large shock-cone opening
half-angle (> 85 degrees), and we suggest this may be evidence of sudden
radiative braking. From the R and G ratios measured from He-like
forbidden-intercombination-resonance triplets we find evidence that the Mg XI
emission originates from hotter gas closer to the O star than the Si XIII
emission, which suggests that non-equilibrium ionization may be present.Comment: 22 pages, 14 figures. Accepted for publication in MNRA
Separation of bacterial spores from flowing water in macro-scale cavities by ultrasonic standing waves
The separation of micron-sized bacterial spores (Bacillus cereus) from a
steady flow of water through the use of ultrasonic standing waves is
demonstrated. An ultrasonic resonator with cross-section of 0.0254 m x 0.0254 m
has been designed with a flow inlet and outlet for a water stream that ensures
laminar flow conditions into and out of the resonator section of the flow tube.
A 0.01905-m diameter PZT-4, nominal 2-MHz transducer is used to generate
ultrasonic standing waves in the resonator. The acoustic resonator is 0.0356 m
from transducer face to the opposite reflector wall with the acoustic field in
a direction orthogonal to the water flow direction. At fixed frequency
excitation, spores are concentrated at the stable locations of the acoustic
radiation force and trapped in the resonator region. The effect of the
transducer voltage and frequency on the efficiency of spore capture in the
resonator has been investigated. Successful separation of B. cereus spores from
water with typical volume flow rates of 40-250 ml/min has been achieved with
15% efficiency in a single pass at 40 ml/min.Comment: 11 pages, 6 figure
The causes of full ocean depth interannual variability in Drake Passage
In recent years a number of large scale modes of Southern Hemisphere climate variability have been observed, most notably the Southern Annular Mode (SAM, e.g. Thompson and Solomon, 2002), the Pacific South American modes (PSA, e.g. Mo and Peagle, 2001), the Antarctic Dipole (e.g. Martinson and Ianuzzi, 2003), the Antarctic Circumpolar Wave (e.g. White and Peterson, 1996), and of course the El Niño Southern Oscillation (ENSO). All have pronounced effects over or in the Southern Ocean, and may be expected to account for a significant part of the interannual variability observed there. Most studies analyse these phenomena from a large-scale point of view, often by extracting modes from Southern Hemisphere atmospheric and oceanic fields using various mathematical techniques. In this study we have taken an alternative approach, and tried to understand the causes of the full ocean depth variability in Drake Passage observed in the WOCE SR1b repeat hydrographic sections (Cunningham et al. 2003)
Neutron scattering measurements of phonons in nickel at elevated temperatures
Measurements of elastic and inelastic neutron scatterings from elemental nickel were made at 10, 300, 575, 875, and 1275 K. The phonon densities of states (DOSs) were calculated from the inelastic scattering and were fit with Born–von Kármán models of the lattice dynamics. With ancillary data on thermal expansion and elastic moduli, we found a small, negative anharmonic contribution to the phonon entropy at high temperature. We used this to place bounds on the magnetic entropy of nickel. A significant broadening of the phonon DOS at elevated temperatures, another indication of anharmonicity, was also measured and quantified
Predictive Control for Alleviation of Gust Loads on Very Flexible Aircraft
In this work the dynamics of very flexible aircraft are described by a set of non-linear, multi-disciplinary equations of motion. Primary structural components are represented by a geometrically-exact composite beam model which captures the large dynamic deformations of the aircraft and the interaction between rigid-body and elastic degrees-of-freedom. In addition, an implementation of the unsteady vortex-lattice method capable of handling arbitrary kinematics is used to capture the unsteady, three-dimensional flow-eld around the aircraft as it deforms. Linearization of this coupled nonlinear description, which can in general be about a nonlinear reference state, is performed to yield relatively high-order linear time-invariant state-space models. Subsequent reduction of these models using standard balanced truncation results in low-order models suitable for the synthesis of online, optimization-based control schemes that incorporate actuator constraints. Predictive controllers are synthesized using these reduced-order models and applied to nonlinear simulations of the plant dynamics where they are shown to be superior to equivalent optimal linear controllers (LQR) for problems in which constraints are active
Absolute Calibration of the Radio Astronomy Flux Density Scale at 22 to 43 GHz Using Planck
The Planck mission detected thousands of extragalactic radio sources at
frequencies from 28 to 857 GHz. Planck's calibration is absolute (in the sense
that it is based on the satellite's annual motion around the Sun and the
temperature of the cosmic microwave background), and its beams are well
characterized at sub-percent levels. Thus Planck's flux density measurements of
compact sources are absolute in the same sense. We have made coordinated VLA
and ATCA observations of 65 strong, unresolved Planck sources in order to
transfer Planck's calibration to ground-based instruments at 22, 28, and 43
GHz. The results are compared to microwave flux density scales currently based
on planetary observations. Despite the scatter introduced by the variability of
many of the sources, the flux density scales are determined to 1-2% accuracy.
At 28 GHz, the flux density scale used by the VLA runs 3.6% +- 1.0% below
Planck values; at 43 GHz, the discrepancy increases to 6.2% +- 1.4% for both
ATCA and the VLA.Comment: 16 pages, 4 figures and 4 table
Differential Relationship between Physical Activity and Intake of Added Sugar and Nutrient-Dense Foods: A Cross-Sectional Analysis
A curvilinear relationship exists between physical activity (PA) and dietary energy intake (EI), which is reduced in moderately active when compared to inactive and highly active individuals, but the impact of PA on eating patterns remains poorly understood. Our goal was to establish the relationship between PA and intake of foods with varying energy and nutrient density. Data from the 2009–2010 United States National Health and Nutrition Examination Survey were used to include a Dietary Screener Questionnaire for estimated intakes of added sugar, fruits and vegetables, whole grains, fiber, and dairy. Participants (n = 4766; 49.7% women) were divided into sex-specific quintiles based on their habitual PA. After adjustment for age, body mass index, household income, and education, intakes were compared between PA quartiles, using the lowest activity quintile (Q1) as reference. Women in the second to fourth quintile (Q2-Q4) consumed less added sugar from sugary foods (+2 tsp/day) and from sweetened beverages (+2 tsp/day; all p \u3c 0.05 vs. Q1). In men, added sugar intake was elevated in the highest activity quintile (Q5: +3 ± 1 tsp/day, p = 0.007 vs. Q1). Fruit and vegetable intake increased (women: Q1-Q4 +0.3 ± 0.1 cup eq/day; p \u3c 0.001; men: Q1-Q3 +0.3 ± 0.1 cup eq/day, p = 0.002) and stagnated in higher quintiles. Dairy intake increased with PA only in men (Q5: +0.3 ± 0.1 cup eq/day, p \u3c 0.001 vs. Q1). Results demonstrate a differential relationship between habitual PA and dietary intakes, whereby moderate but not necessarily highest PA levels are associated with reduced added sugar and increased nutrient-dense food consumption. Future research should examine specific mechanisms of food choices at various PA levels to ensure dietary behaviors (i.e., increased sugary food intake) do not negate positive effects of PA
Absence of Magnetism in Hcp Iron-Nickel at 11 K
Synchrotron Mössbauer spectroscopy (SMS) was performed on an hcp-phase alloy of composition Fe92Ni8 at a pressure of 21 GPa and a temperature of 11 K. Density functional theoretical calculations predict antiferromagnetism in both hcp Fe and hcp Fe-Ni. For hcp Fe, these calculations predict no hyperfine magnetic field, consistent with previous experiments. For hcp Fe-Ni, however, substantial hyperfine magnetic fields are predicted, but these were not observed in the SMS spectra. Two possible explanations are suggested. First, small but significant errors in the generalized gradient approximation density functional may lead to an erroneous prediction of magnetic order or of erroneous hyperfine magnetic fields in antiferromagnetic hcp Fe-Ni. Alternately, quantum fluctuations with periods much shorter than the lifetime of the nuclear excited state would prohibit the detection of moments by SMS
- …