11,843 research outputs found
Chlamydia control activities in Europe: cross-sectional survey
Background: Chlamydia is the most commonly reported bacterial sexually transmitted infection in Europe. The objective of the Screening for Chlamydia in Europe (SCREen) project was to describe current and planned chlamydia control activities in Europe.
Methods: The authors sent a questionnaire asking about different aspects of chlamydia epidemiology and control to public health and clinical experts in each country in 2007. The principles of sexually transmitted infection control were used to develop a typology comprising five categories of chlamydia control activities. Each country was assigned to a category, based on responses to the questionnaire.
Results: Experts in 29 of 33 (88%) invited countries responded. Thirteen of 29 countries (45%) had no current chlamydia control activities. Six countries in this group stated that there were plans to introduce chlamydia screening programmes. There were five countries (17%) with case management guidelines only. Three countries (10%) also recommended case finding amongst partners of diagnosed chlamydia cases or people with another sexually transmitted infection. Six countries (21%) further specified groups of asymptomatic people eligible for opportunistic chlamydia testing. Two countries (7%) reported a chlamydia screening programme. There was no consistent association between the per capita gross domestic product of a country and the intensity of chlamydia control activities (Pâ=â0.816).
Conclusion: A newly developed classification system allowed the breadth of ongoing national chlamydia control activities to be described and categorized. Chlamydia control strategies should ensure that clinical guidelines to optimize chlamydia diagnosis and case management have been implemented before considering the appropriateness of screening programmes
Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models
We use 3D numerical MHD simulations to follow the evolution of cold,
turbulent, gaseous systems with parameters representing GMC conditions. We
study three cloud simulations with varying mean magnetic fields, but identical
initial velocity fields. We show that turbulent energy is reduced by a factor
two after 0.4-0.8 flow crossing times (2-4 Myr), and that the magnetically
supercritical cloud models collapse after ~6 Myr, while the subcritical cloud
does not collapse. We compare density, velocity, and magnetic field structure
in three sets of snapshots with matched Mach numbers. The volume and column
densities are both log-normally distributed, with mean volume density a factor
3-6 times the unperturbed value, but mean column density only a factor 1.1-1.4
times the unperturbed value. We use a binning algorithm to investigate the
dependence of kinetic quantities on spatial scale for regions of column density
contrast (ROCs). The average velocity dispersion for the ROCs is only weakly
correlated with scale, similar to the mean size-linewidth relation for clumps
within GMCs. ROCs are often superpositions of spatially unconnected regions
that cannot easily be separated using velocity information; the same difficulty
may affect observed GMC clumps. We analyze magnetic field structure, and show
that in the high density regime, total magnetic field strengths increase with
density with logarithmic slope 1/3 -2/3. Mean line-of-sight magnetic field
strengths vary widely across a projected cloud, and do not correlate with
column density. We compute simulated interstellar polarization maps at varying
orientations, and determine that the Chandrasekhar-Fermi formula multiplied by
a factor ~0.5 yields a good estimate of the plane-of sky magnetic field
strength provided the dispersion in polarization angles is < 25 degrees.Comment: 56 pages, 25 figures; Ap.J., accepte
Age Dating of a High-Redshift QSO B1422+231 at Z=3.62 and its Cosmological Implications
The observed Fe II(UV+optical)/Mg II lambda lambda 2796,2804 flux ratio from
a gravitationally lensed quasar B1422+231 at z=3.62 is interpreted in terms of
detailed modeling of photoionization and chemical enrichment in the broad-line
region (BLR) of the host galaxy. The delayed iron enrichment by Type Ia
supernovae is used as a cosmic clock. Our standard model, which matches the Fe
II/Mg II ratio, requires the age of 1.5 Gyr for B1422+231 with a lower bound of
1.3 Gyr, which exceeds the expansion age of the Einstein-de Sitter Omega_0=1
universe at a redshift of 3.62 for any value of the Hubble constant in the
currently accepted range, H_0=60-80 km,s^{-1},Mpc^{-1}. This problem of an age
discrepancy at z=3.62 can be unraveled in a low-density Omega_0<0.2 universe,
either with or without a cosmological constant, depending on the allowable
redshift range of galaxy formation. However, whether the cosmological constant
is a required option in modern cosmology awaits a thorough understanding of
line transfer processes in the BLRs.Comment: 7 pages including 3 figures, to appear in ApJ Letter
Sintering of titanium with yttrium oxide additions for the scavenging of chlorine impurities
Chloride impurities in titanium powders are extremely difficult to remove and present a long-standing problem in titanium powder metallurgy. We show that the detrimental effects of chlorides on the sintering of titanium can be mitigated with trace additions of yttrium oxide, which has a high affinity for the normally volatile species and forms highly stable oxychloride reaction products. Compacts that would otherwise exhibit gross swelling and excessive porosity due to chloride impurities can be now sintered to near full density by liquid phase sintering. The potency of yttrium oxide additions is observable at levels as low as 500 ppm. The scavenging of chlorine by YO appears to be independent of alloy composition and sintering regime. It is effective when used with high-chloride powders such as Kroll sponge fines but ineffective when used with powders containing NaCl impurities or during solid-state sintering. The identification of highly potent chlorine scavengers may enable the future development of chloride-tolerant powder metallurgy (PM) alloys aimed at utilizing low-cost, high-chloride powder feedstocks
On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening
We assess the contribution of dynamical hardening by direct three-body
scattering interactions to the rate of stellar-mass black hole binary (BHB)
mergers in galactic nuclei. We derive an analytic model for the single-binary
encounter rate in a nucleus with spherical and disk components hosting a
super-massive black hole (SMBH). We determine the total number of encounters
needed to harden a BHB to the point that inspiral due to
gravitational wave emission occurs before the next three-body scattering event.
This is done independently for both the spherical and disk components. Using a
Monte Carlo approach, we refine our calculations for to include
gravitational wave emission between scattering events. For astrophysically
plausible models we find that typically 10.
We find two separate regimes for the efficient dynamical hardening of BHBs:
(1) spherical star clusters with high central densities, low velocity
dispersions and no significant Keplerian component; and (2) migration traps in
disks around SMBHs lacking any significant spherical stellar component in the
vicinity of the migration trap, which is expected due to effective orbital
inclination reduction of any spherical population by the disk. We also find a
weak correlation between the ratio of the second-order velocity moment to
velocity dispersion in galactic nuclei and the rate of BHB mergers, where this
ratio is a proxy for the ratio between the rotation- and dispersion-supported
components. Because disks enforce planar interactions that are efficient in
hardening BHBs, particularly in migration traps, they have high merger rates
that can contribute significantly to the rate of BHB mergers detected by the
advanced Laser Interferometer Gravitational-Wave Observatory.Comment: 13 pages, 9 figures, accepted for publication in MNRA
Corrections to deuterium hyperfine structure due to deuteron excitations
We consider the corrections to deuterium hyperfine structure originating from
the two-photon exchange between electron and deuteron, with the deuteron
excitations in the intermediate states. In particular, the motion of the two
intermediate nucleons as a whole is taken into account. The problem is solved
in the zero-range approximation. The result is in good agreement with the
experimental value of the deuterium hyperfine splitting.Comment: 7 pages, LaTe
Wolf-Rayet and LBV Nebulae as the Result of Variable and Non-Spherical Stellar Winds
The physical basis for interpreting observations of nebular morphology around
massive stars in terms of the evolution of the central stars is reviewed, and
examples are discussed, including NGC 6888, OMC-1, and eta Carinae.Comment: To be published in the Proceedings of IAU Colloquium 169 on Variable
and Non-Spherical Stellar Winds in Luminous Hot Stars, ed. B. Wolf
(Springer-Verlag, Berlin, Heidelberg). 7 pages, including 5 figures. A
full-resolution version of fig 4 is available in the version at
http://www.mpia-hd.mpg.de/theory/preprints.html#maclo
The Counting of Generalized Polarizabilities
We demonstrate a concise method to enumerate the number of generalized
polarizabilities---quantities characterizing the independent observables in
singly-virtual Compton scattering---for a target particle of arbitrary spin s.
By using crossing symmetry and J^{PC} conservation, we show that this number is
(10s+1+delta_{s,0}).Comment: 10 pages, revtex4, no figures. Version to appear in Phys. Rev. D.
Paper now divided into sections and clarifying comments added, but physics
content unchange
Loss of star forming gas in SDSS galaxies
Using the star formation rates from the SDSS galaxy sample, extracted using
the MOPED algorithm, and the empirical Kennicutt law relating star formation
rate to gas density, we calculate the time evolution of the gas fraction as a
function of the present stellar mass. We show how the gas-to-stars ratio varies
with stellar mass, finding good agreement with previous results for smaller
samples at the present epoch. For the first time we show clear evidence for
progressive gas loss with cosmic epoch, especially in low-mass systems. We find
that galaxies with small stellar masses have lost almost all of their cold
baryons over time, whereas the most massive galaxies have lost little. Our
results also show that the most massive galaxies have evolved faster and turned
most of their gas into stars at an early time, thus strongly supporting a
downsizing scenario for galaxy evolution.Comment: 29 pages, 9 figures, ApJ, accepte
- âŠ