48,360 research outputs found

    Manipulation of the dynamics of many-body systems via quantum control methods

    Full text link
    We investigate how dynamical decoupling methods may be used to manipulate the time evolution of quantum many-body systems. These methods consist of sequences of external control operations designed to induce a desired dynamics. The systems considered for the analysis are one-dimensional spin-1/2 models, which, according to the parameters of the Hamiltonian, may be in the integrable or non-integrable limits, and in the gapped or gapless phases. We show that an appropriate control sequence may lead a chaotic chain to evolve as an integrable chain and a system in the gapless phase to behave as a system in the gapped phase. A key ingredient for the control schemes developed here is the possibility to use, in the same sequence, different time intervals between control operations.Comment: 10 pages, 3 figure

    Plane waves in noncommutative fluids

    Full text link
    We study the dynamics of the noncommutative fuid in the Snyder space perturbatively at the first order in powers of the noncommutative parameter. The linearized noncommutative fluid dynamics is described by a system of coupled linear partial differential equations in which the variables are the fluid density and the fluid potentials. We show that these equations admit a set of solutions that are monocromatic plane waves for the fluid density and two of the potentials and a linear function for the third potential. The energy-momentum tensor of the plane waves is calculated.Comment: 11 pages. Version published as a Lette

    High resolution imaging of the early-type galaxy NGC 1380: an insight into the nature of extended extragalactic star clusters

    Get PDF
    NGC 1380 is a lenticular galaxy located near the centre of the Fornax Cluster northeast of NGC 1399. The globular cluster system of this galaxy was previously studied only from the ground. Recent studies of similar early-type galaxies, specially lenticular ones, reveal the existence of star clusters that apparently break up the traditional open/globular cluster dichotomy. With higher quality photometry from HST/WFPC2 we study the star clusters in NGC 1380, measuring their magnitudes, colours, sizes and projected distances from the centre of the galaxy. We used deep archival HST/WFPC2 in the B and V bands. We built colour magnitude diagrams from which we selected a sample of cluster candidates. We also analysed their colour distribution and measured their sizes. Based on their location in the luminosity-size diagram we estimated probabilities of them being typical globular clusters as those found in the Galaxy. A total of about 570 cluster candidates were found down to V=26.5. We measured sizes for approximately 200 of them. The observed colour distribution has three apparent peaks. Likewise for the size distribution. We identified the smaller population as being mainly typical globular clusters, while the more extended objects have small probabilities of being such objects. Different correlations between absolute magnitudes, sizes, colours and location were inferred for these cluster sub-populations. Most extended clusters (Reff > 4 pc) share similar properties to the diffuse star clusters reported to inhabit luminous early-type galaxies in the Virgo galaxy cluster such as being of low surface brightness and fainter than MV ~ -8. We also report on a small group of (Reff ~ 10 pc), -8< MV < -6, red clusters located near the centre of NGC 1380, which may be interpreted as faint fuzzies.Comment: accepted for publication in A&

    On quasiparticle lifetimes and transport in ordered and disordered metals

    Get PDF
    Imperial Users onl

    Three-dimensional quasi-Tonks gas in a harmonic trap

    Full text link
    We analyze the macroscopic dynamics of a Bose gas in a harmonic trap with a superimposed two-dimensional optical lattice, assuming a weak coupling between different lattice sites. We consider the situation in which the local chemical potential at each lattice site can be considered as that provided by the Lieb-Liniger solution. Due to the weak coupling between sites and the form of the chemical potential, the three-dimensional ground-state density profile and the excitation spectrum acquire remarkable properties different from both 1D and 3D gases. We call this system a quasi-Tonks gas. We discuss the range of applicability of this regime, as well as realistic experimental situations where it can be observed.Comment: 4 pages, 3 figures, misprints correcte

    Delocalization and wave-packet dynamics in one-dimensional diluted Anderson models

    Full text link
    We study the nature of one-electron eigen-states in a one-dimensional diluted Anderson model where every Anderson impurity is diluted by a periodic function f(l)f(l) . Using renormalization group and transfer matrix techniques, we provide accurate estimates of the extended states which appear in this model, whose number depends on the symmetry of the diluting function f(l)f(l). The density of states (DOS) for this model is also numerically obtained and its main features are related to the symmetries of the diluting function f(l)f(l). Further, we show that the emergence of extended states promotes a sub-diffusive spread of an initially localized wave-packet.Comment: 6 pages, 6 figures, to appear in EPJ

    Many-particle confinement by constructed disorder and quantum computing

    Full text link
    Many-particle confinement (localization) is studied for a 1D system of spinless fermions with nearest-neighbor hopping and interaction, or equivalently, for an anisotropic Heisenberg spin-1/2 chain. This system is frequently used to model quantum computers with perpetually coupled qubits. We construct a bounded sequence of site energies that leads to strong single-particle confinement of all states on individual sites. We show that this sequence also leads to a confinement of all many-particle states in an infinite system for a time that scales as a high power of the reciprocal hopping integral. The confinement is achieved for strong interaction between the particles while keeping the overall bandwidth of site energies comparatively small. The results show viability of quantum computing with time-independent qubit coupling.Comment: An invited paper for the topical issue of J. Opt. B on quantum contro
    • …
    corecore