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ABSTRACT 

A theoretical analysis of electronic quasiparticle lifetimes 
in ordered and disordered metals is presented in this work. 

In the first part of the thesis we consider the case of 
electron-phonon interactions in pure metals. At low temperatures 
the quasiparticle inverse lifetime varies as T2 (T, temperature). 
The effective inter-electron interaction mediated by virtual 
phonons dominates real phonon scattering processes which give a 
T3 contribution. It is shown that, to obtain correctly the 
scattering amplitude, to lowest order in v^ / ep ( and are 
the Debye and Fermi energies respectively), Migdal's theorem for 
the electron-phonon interaction must be modified. We derive a 
formal expression for the full electron-electron scattering ampli-
tude including direct and phonon exchange interactions. These 
results provide a microscopic justification of MacDonald's 
suggestion that phonon mediated interactions should contribute 
significantly to the electron-electron resistivity of simple 
metals. 

The case of disordered metals is considered in the second 
part of the thesis. 

It is known that static disorder scattering affects the 
temperature dependences of the quasiparticle inverse lifetime 
at low temperatures. We extend and improve a method of calculation 
recently proposed by Abrahams, Anderson, Lee and Ramakrishnan. 

3 /2 
For dynamically screened interactions we find a T and 

m wee, cindl 4loo jiwe»sionv 
T ln(T2/T) temperature dependences a results previously found by 
Schmid and Abrahams, Anderson, Lee and Ramakrishnan. Our result 
in two dimensions differs in detail from that of the latter 
authors. Its relation to the theory of weak localization, and 
some experimental results are also discussed. 



i i 

Finally, we consider the case of electron-phonon interactions 
for a simple model Hamiltonian. At the lowest temperatures we 
recover the behaviour characteristic of electron-electron 

r\ / 9 
interactions, i.e. T (d, dimensionality). The extra 
logarithmic factor in two dimensions occurs only for dynamically 
screened Coulomb interactions. 
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CHAPTER 1 

PROBLEMS AND METHODS 

The single most important property of quasiparticle life-
times is that they are long. Indeed, the very concept of 
quasiparticle as a well defined excitation of a many-body 
system requires that the corresponding lifetime be very long. 

In this work we shall be concerned exclusively with 
electronic quasiparticles in metals. And these are not very 
accessible to experimental measurement. The reason is, of 
course, that no physical probes couple to a single fermion. 
By conservation of spin, fermions must be created or destroyed 
in pairs and therefore all electronic response functions are 
two particle Green's functions. In many instances then, one 
concerns oneself with quasiparticle lifetimes only when they 
become a bit too short for comfort. And yet these quantities 
reflect in a very direct way the characteristics of the inter-
actions within the system. 

Quasiparticle lifetimes are most often calculated from 
one particle Green's functions. In a clean metal the Green's 
function has the form 

G(fe,«nv) V t t — x ( 1- 1 ) 

where uĵ  is the bare particle energy measured with respect to 

the chemical potential u, Z. ( B, is the self-energy and 
= t*™*'1) is a Fermion Matsubara frequency. The 

location of the poles of the advanced or retarded Green's 
functions gives the quasiparticle energy and inverse 
lifetime ? (Nozieres 1964) 
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CO 
ft 

= ^ + ZL^ ) (1 .2a) 

r* s *fc "fc ) (1.2b) 

where Z A ( and are the real and imaginary parts 
of the advanced self-energy , and ŷ* the 
quasiparticle renormalization factor is 

** « m -
3 co m= to 

(1.3) 

and gives the spectral weight of the quasiparticle state 
The physical interpretation of P^ is that it gives the 

rate of decay of the amplitude of finding a particle in state k 
after one has been added, in that state, to a system which is 
otherwise in thermal equilibrium. In the cases where a Boltzmann 
equation is valid this quantity can be calculated by computing 
the rate of decay of the occupation of a state k which is 
changed with respect to its equilibrium value. In this case, 
however, one obtains the rate of decay of the probability of 
finding the particle in state k which is twice the quasiparticle 
inverse lifetime as defined in eq. (1.2(b)) . 

In Chapters 2 and 3 we use Green's function methods to 
derive a formal expression for the quasiparticle inverse lifetime 
in a clean metal, in which the right hand side has the form of a 
Boltzmann electron-electron collision integral. This allows us 
to identify the form of the scattering amplitude which involves 
phonon mediated interactions as well as direct electron-electron 
ones. We find "that Migdal's theorem (Migdal 19 58), as it is 
usually stated, in terms of the electron self-energy,does not 
give the phonon exchange scattering amplitude correctly to 
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lowest order in v /£«• ( V and are the Debye and Fermi 
j j) 

energies respectively). This investigation was prompted by a 
suggestion of MacDonald (1980) and MacDonald, Taylor and Geldart 
(1981), that the phonon mediated interaction should contribute 
significantly to the electron-electron resistivity of simple 
metals. This work provides a microscopic derivation of the full 
electron-electron scattering amplitude in the Boltzmann collision 
integral and supports MacDonald's suggestion. 

The second part of the thesis, Chapters 4 to 6, deals with, 
the question of quasiparticle lifetimes in disordered systems. 
We are here referring not to the lifetime of a momentum state, 
which is dominated by elastic impurity scattering, but to the 
lifetime of an exact eigenstate of the Hamiltonian in the absence 
of interactions. Recent theoretical advances have opened the 
possibility of measuring directly this latter quantity (see 
Chapter 4). What is measured, in fact, is the lifetime of a two 
particle propagator, but it turns out to be closely related to 
the quasiparticle lifetime. This has created a lot of experi-
mental and theoretical activity in this field. In fact, the 
interplay of interactions and disorder is proving to be one of 
the most fascinating areas of condensed matter physics in recent 
years. 

Finally, some words on notation. In defining our Green's 
functions we have used the conventions of Fetter and Walecka 
(1971) (the book from which I learned the subject). We have 
set k = 1 throughout the work. A slightly unconventional 
notation is that the superscripts 'R' or 'A' (retarded or 
advanced) are used in the Green's functions or self-energies 
to mean that their frequency arguments have positive or 
negative imaginary parts, irrespective of whether or not they 
have been analytically continued to the real axis. 
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CHAPTER 2 

PHONON EXCHANGE INTERACTIONS 

2.1 Electron-Electron Resistivity of Simple Metals 
It has been suggested recently by MacDonald and co-

workers (MacDonald 19 80 , MacDonald, Taylor and Geldart 1981) 
that the effective electron-electron interaction due to the 
exchange of phonons should contribute to the electrical 
resistivity in exactly the same way as the direct Coulomb 
interaction, namely, giving rise to a T2 term in the low 
temperature resistivity (T <<0 D, where 0 D is the Debye 
temperature). This contribution was calculated by relating 
effective scattering probability to the electronic four-point 
function in the limit of zero energy transfer, and substantially 
alters the coefficient of the T2 term in the resistivity of 
simple metals (MacDonald 1980; MacDonald, Taylor and Geldart 
1981; see Table I). 

MacDonald's assumption is tantamount to saying that a 
correct Boltzmann equation for the electron-phonon system 
would have an effective electron-electron collision integral. 

On the other hand, conventional Boltzmann treatment of 
transport in the electron-phonon system (Ziman 1962) gives a 

5 
limiting low temperature behaviour for the resistivity of T 
and microscopic derivations of transport equations by Prange 
and Kadanoff (1964) and Prange and Sachs (1967) apparently 
confirmed the results of this conventional theory. 

To the best of our knowledge the only (indirect) 
microscopic basis for MacDonald's suggestion lies in the work 
of Abrikosov, Gorkov and Dzyaloshinskii (1963) (AGD), who did 
a diagrammatic calculation of the electron self-energy based on 
Migdal's theorem (Migdal 1958), which provides a classification 



M E T A L 
P " 

/ T l ' ( l o ' ^ a nt K" 4 ) 

COW L O M B 
COOLOM 6 + 

PHOf/OV EXCHANGE Exp 

L i 0 . 6 2 1 - 2 0 0 

Ne t 0 . 1 1 3 18 - I 9 . 5 

K 0. 4 5 . 5 - 2 4 

R l 1 . & 4 1 2 & 

t a b l e i 

Values of the T2 coefficient of the resistivity 
of various simple metals. Theoretical values 
are calculated with Coulomb interactions only 
(first column) and with inclusion of phonon 
exchange interactions (second column). Shown 
also are experimental values (from MacDonald, 
Taylor and Geldart (81) and MacDonald (80)). 



of diagrams in powers of v /€_ ( v is the Debye energy 
^ F 3 

and £f the Fermi energy). Typically this ratio is of 
order 1%. At the very lowest temperatures t « 
they showed that the electronic inverse lifetime varies as 
T2 when account is taken of finite phonon lifetimes and not 
as T3 as one would expect from electron-phonon real scattering 
(a similar result for the electron inverse lifetime as a function 
of energy away from the fermi level at T = 0 was found earlier 
by Migdal (1958)). The T2 dependence is characteristic of 
fermion interactions and AGD attribute this contribution to 
the sort of effective interaction that MacDonald invoked. 

The resistivity is proportional to a transport inverse 
lifetime which does not, necessarily, have the same temperature 
dependence as the quasiparticle inverse lifetime. The latter is 
essentially the rate of collisions whereas the transport inverse 
lifetime is basically the rate of decay of current. For 
electron-phonon scattering, in the transport inverse lifetime, 
the scattering probability Pft , is weighted with a 
factor 1- V-.Y-z/v1 ( v is the velocity of a state fc) 

— t & 'a ~~ 

which gives the fractional change of current along the initial 
direction in a scattering event fc k/ . For simple metals 
with almost spherical Fermi surfaces this factor may be 
replaced by 1 - £•k' / K1 . At low temperatures (T << 9 ) 
the typical phonon wavevector is very small 

~ 1 « 
<s 

where Cg is the sound velocity. Hence the angle 0 between 
k and k1 is also very small and 



7. 

5 It is for this reason that the resistivity varies as T 
3 

whereas' the quasiparticle inverse lifetime varies as T . 
On the other hand electron-electron scattering only 

contributes to the resistivity for nonspherical Fermi 
surfaces with Umklapp scattering. Otherwise the current is 
conserved in a collision and does not decay. Provided this 
condition is satisfied, though, one normally finds that the 
transport and quasi particle inverse lifetimes show the same 
T2 * dependence which arises from well known phase space 
restrictions in the Boltzmann fermion-fermion collision 
integral (see for instance Baym and Pethick 19 78). 

This fact will be used to attempt a more definite 
microscopic justification of MacDonald's suggestion than 
that provided by the calculation of AGD. 

In section 2.2 we rederive the result of AGD but cast 
it into a form that makes it obvious that the T2 inverse life-
time, for the electron-phonon system, can be obtained from a 
Boltzmann equation with an effective electron-electron 
collision integral. However, we find that the corresponding 
scattering probability only includes the direct term and omits 
an exchange contribution which is expected to be of the same 
order of magnitude. This leads us to reconsider Migdal's 
theorem and we find that we must calculate another skeleton 
diagram - usually discarded on the basis of Migdal1s result -
in order to obtain the complete electron-electron effective 
scattering probability. This is done in section 2.3. These 
two sections are somewhat technical, but the final result -
eq. (2.27) - is very intuitive. In section 2.4 we discuss the 
physical reason for our choice of diagrams and argue that all 
remaining contributions are smaller by a factor v / e . In 

p r 
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the following chapter these results are generalized to include 
Coulomb interactions. 

Given the nature of our purpose, we consider the 
simplest possible electron-phonon hamiltonian - a jellium 
model with longitudinal Debye phonons and electron-phonon 
matrix elements dependent only on - A1 1 and 
behaving as i M ^ ^ - c I £ - for lk.-k'l«KF . Our 
essential conclusions will certainly go through for more 
realistic models. 

2 . 2 The "Direct" Interaction 
The one particle Green's functions for the electron-

phonon system can be obtained from a set of integral equations 
which involve the full vertex function. This function is 
obtained by summing all linked diagrams with one phonon and 
two electron external lines in which all propagators are 
renormalized (see Fig. 2.1). Migdal showed, as early as 19 58, 
that all corrections to the bare vertex involve a small multi-

, jl 2. 
plicative factor of order y^/eF , i.e. where m and 
M are the electronic and ionic masses (Migdal 1958 and AGD). 

One is then led to the conclusion that the dominant 
electron and phonon self-energies are given by the diagrams « 
in Fig. 2.2 (see AGD). We shall, in fact, see that to obtain 
the low temperature electronic self-energy completely to 
dominant order in VL/ €_ we have to consider an extra 

» r 
diagram. In this paragraph, however, we sketch the main steps 
in the calculation of the diagram of Fig. 2.2(a) , which already 
involves a T2 correction to the usual T3 contribution. 

By using the spectral representations for the Green's 
functions we can perform the frequency sums in the usual way 
(see Schrieffer 1964 for details) and obtain for the imaginary 
part of the electron self-energy, 



X 
+ + 

X 

rx/^ 
x 

+ • • • + < \ 

x 
x 

(a) (b) (c) (d) 

f i g 2 . 1 

Bare electron phonon vertex (a) and some corrections (b, c, d). 
External lines are not included in the definition of the vertex 
function 
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Electron (a) and phonon (b) self-energies in the context 
of Migdal's theorem. All propagators are renormalized. 
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^clu)5 1 • j m x¥ 

x [ 1 - f l i')] 1j) (2.1) 

where anc^ ^G^.Tj) a r e the electron and phonon 
spectral functions and -f ( and are the fermion 
and boson thermal occupation factors. Equation (2.1) apparently 
includes only phonon emission processes. This is because we 
are integrating tj between ±<D . Using the property 

o - c ^ n ) -- - o-c^-tj) 

(which can be proved from the Lehman representation for CTĈ yj) 
for a system with a centre of symmetry) we can rewrite eq. (2.1) 
with Tj integrated between 0, + go and, then, the phonon 
absorption term would appear explicitly. 

From the imaginary part of the self-energy we can get 
the real part using the well known dispersion relation 

f f i l ' ( 2 . 2 ) 
jit ^ - i ' 

The electronic spectral function is itself given in terms of 
zj and v 

(all electronic energies are measured with respect to the 
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Fermi energy). 
We shall now argue that in the frequency and temperature 

ranges we are interested in, K^* ** ^ , it is 
possible, without further approximation, to make the replace-
ment 

p ( V ) ^ V £
S ' ) < 2 - 4 > 

where H^/ ^he guasiparticle renormalization factor, and 
the renormalized electron energy, are defined by 

^ a | ' ( 2' 5 ) 

(2.6) 

where ^ ^ is the bare electron energy. 
To prove the validity of eq. (2.4) we need to invoke 

some properties of Z C*.^) which will be borne out self-
consistently by the calculation, 
( i ) 

varies slowly with f̂e, - on a scale 
or order 6p - but much more quickly with ^ or 
kgT - on a scale of order ^ . We shall see shortly 
that we only need, in eq. (2.1) , values of such 
that icô.l < Max {l^l, ) - Hence we can 
neglect entirely the k1 variation of Z^C 
(and by eq. (2.2) of Z A ( ) and set = . 

(ii) As | , kgT —> 0 ,Z goes to zero at least as 
fast as Max ̂  V , ^ . 

V 
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These two properties imply that ) , as a function 
of , is strongly peaked near the renormalized energy 
having a lorentzian form near the peak, i.e. for 
i ? - 4 , s o « k,4t} 

0( K,' r X 3ft,' fV (2.7) 
r " r j 

where 

is the quasiparticle inverse lifetime. 
Note that the important values of in eq. (2.1) are 

£ since the thermal factors are 
cut off exponentially for l|'l ̂  Ho*^ )|1 , V j . 

In the region of integration for which 

lufc'l* max | i, test} ; V > 

is well represented by the lorentzian of eq. (2.7) for the 
important values of . But the width Ĵ / is then at most 
of order Mo*!* ̂  whereas the thermal occupation 
factors vary on a scale of order k_T or}£j. It follows, then, 

b c 
that the replacement of eq. (2.4) is correct to lowest order 
in temperature or frequency. 

For I Gô , \ y> Max^l^q fcgTlj eq. (2.7) no longer gives 
a good representation of fC^', for !|'U Me* { V } 
But in this case we have w ft/ and we can write 

pis'. ?') - (2.9) 
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( l') goes to zero as o as well) . As we 
have Z2(B ,V) ~ M a x{ I'^VO*^ follows that this region 
of values of CJ^ gives a contribution which is of higher 
order in T or ^ compared to the one coming from 

Although the justification of eq. (2.4) was presented 
in the context of eq. (2.1), we find that this simplification 
is also valid in other expressions that we shall encounter 
later and can be justified by very similar arguments. 

It is implicit in the previous argument that < r ( V ^ ) 
varies slowly with compared to y} w e shall 
soon see that this is correct. In fact, our results can be 
obtained without using eq. (2.4) by taking advantage of 
property (i) above and the fact that the electronic self-energy 
is at most of order , following a method due to Prange and 
Kadanoff (1 964) . However, for the range of temperatures we 
are interested in, eq. (2.4) is valid and does not involve an 
approximation. Then eq. (2.1) becomes, 

(^n)3 - " 

crc 5-d^o 

(2.10) 

The phonon spectral function is discussed in appendix A 
(see also AGD) . For yĵ  v^ it can be represented as a 
difference of two lorentzians centred around ± , where v^ 
is the phonon renormalized energy, with a width ^ of order 

. it is linear in for « V^ (eqs. (A.14)-
(A.16)). 

For simplicity we consider in eq. (2.10) the limit 
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if I << k_T; in the opposite limit we can apply similar arguments 
a 

with if I in place of kgT. The term in square brackets in eq. 
(2.10) varies with on a scale of order k„T and is ft jj 
exponentially small for i I >> kgT. Let us then consider 
first the contribution of phonons with ^-h.1 ^ 
integral over is then dominated by the peaks of 
CT a n d , a s JTfc.fc' ~ 1 eF ^ V tt' ^ ^ 

we can make the replacement 

" " ( 2 . 1 1 ) 

where y9 is the bare phonon frequency. The k1 integral % 
can now be performed over all values of k' because the modes 
with >> kgT give an exponentially small contribution. 
We see that except for minor scale factors and energy 
renormalization we recovered the result of first order 
perturbation theory. Taking into account that l^L^/I* 
tor I ft-R. 

I « it is straightforward to show that 
ZL2(kF,0) is of order (AGD) where 

= v*. ! / Vn which is of order one for most 0 <\ o 1 + metals (n is the electronic unrenormalized density of states o 
per unit volume and spin state at the Fermi level). 

However, in the region K^T eq. (2.11) is 
not a good representation of the spectral function for modes 
with k̂.-*/ ^ r̂"1" • I n this case we have .̂y*.' 
and (see eq. (A.16)) 
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cr = - - z 

i ^ s . c v s ' . o ) ] 4 

( 2 . 1 2 ) 

where ^i^*1!) and are the real and imaginary 
parts of the phonon self-energy, the latter being linear in 
for ^ 1 ̂  . These modes will then give a contribution of 
order T2 which will dominate, at low enough temperatures, 
(T << , as we shall see) over the conventional 
T3 term (see Fig. 2.3) . 

We shall now demonstrate explicitly the electron-electron 
coupling nature of this dominant low temperature contribution 
to the electron lifetime. 

The imaginary phonon self-energy is given by 

* [ f < * 0 - f < v ? ) ] ( 2 - 1 3 ) 

We are interested only in the term linear in for small i) 
By similar arguments to those that led to eq. (2.4) one can show 
that one can replace both electronic spectral functions by the 
corresponding delta functions to get (see Appendix A), 

x S( -
(2.14) 

Substituting this in eq. (2.12) and the resulting 
expression in eq. (2.10), we get 



Schematic representation of the phonon spectral function. 
The broken lines are intended to suggest the variation of 
thermal occupation factors in eq. (2.10*) in the limits 

(a) H bT > ^ 
<b) K. T «- V ; 3 = i - f . 
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j an) 5 (2n) ^ „ 

(2.15) 
z. where = fci* " and the factor / } 

i 0 ^ 

is incorporated in lMk|_K | ^Y replacing the unrenormalized 
phonon energies which appear in the definition of the electron-
phonon matrix elements by renormalized ones (Holstein 1964). 
Using well known transformations of thermal occupation factors 
one can rewrite eq. (2.15) as 

L ) (2T.)5 * , I uto5 l^)5 * v> 

( 2 . 1 6 ) 

where = and Z- s 
The reader familiar with the Boltzmann equation will 

probably recognize in eq. (2.16) the expression one would get 
for the quasiparticle relaxation rate, 

1 2. Z.a( (2.17) 

from an electron-electron collision integral with a transition 
probability given by 

Co ( 1,2-* i,H) * CJ C 

1 r i z 

v * * (2.18) 
rr t; where (j and U) are the transition orobabilities for 
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* / tt t4, \ 
parallel and antiparallel spins of and [ (J - J 

In a Boltzmann equation formulation one generally takes ^a,/ 
on the energy shell. Equation (2.17) then describes the 
effects of a collision of the type illustrated in Fig. 2.4(a) 
in which the interaction line is obtained by taking the product 
of two electron-phonon matrix elements, the zero frequency 
limit of the phonon propagators, and the square roots of the 
quasiparticle renormalization factors for each of the electronic 
states involved in the collision. The T2 dependence of the 
quasiparticle inverse lifetime is now clearly seen to originate 
from the well known phase space restrictions on fermion-fermion 
scattering in a degenerate Fermi Gas (see for instance Baym 
and Pethick 1978) . 

However, the attentive reader will have noticed that, 
although we have derived an analogue of the direct electron-
electron collision integral, we have as yet no analogue of 
the corresponding exchange contribution (Fig. 2.4(b)) which 
is expected to be of the same order of magnitude. This 
omission will be rectified in the next paragraph. 

2.3 The Exchange Contribution 
It is clear from the previous analysis that the missing 

exchange scattering term must come from diagrams which are 
usually discarded on the basis of Migdal's theorem. We shall 
now show that it comes from the electron-phonon diagram in Fig. 
2.5 and, lest the alarmed reader ask himself, "If the theorem 
fails, why only this diagram and not all others?", we shall 
also argue in section 2.4 that this is the only extra diagram 
needed to lowest order in V /£ . A more conclusive proof 

J> F 
may be found in the following chapter. 

The full contribution of this diagram is 



(a) (b) 

f i g 2 . 4 

Electron-electron interactions 
(a) Direct 
(b) Exchange 
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> 

f i g 2 . 5 

Electron self-energy diagram which is normally 
ignored on the basis of Migdal's theorem but 
which is shown to give a T2 contribution of the 
same order of magnitude as that given in 
Fig. 2 . 2(a) . 
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( .4 cl ti j 
;3 1 v i s m 

(4-n)0 (zii)-

[ i l jji i l s i i p c ? r » , f j 
J 2 7T ztt Z7f 2H 2T 

*(±?2l 1 1 1 2 

where fc.^ = ft, + and the are fermion Matsubara 
frequencies z [z * *) T k8T ( £ = 

The calculation of the frequency sums is quite straight-
forward, albeit tedious, but the final result can be cast into 
a very appealing form. The imaginary part of the self-energy 
can be written as a sum of terms which can be identified with 
the various possible scattering events. For example, two of 
the terms are 

1 
4 — { f j ' - f , ) ( ' - f j * f 3 U ' - f j } S i l . * W * , ) 

v 4 . - 1 . v 5 . - v * * 1 m 

(2.20a) 

— 4 ft'i-UUiwv 

The term in eq. (2.20a) can be viewed as describing a 
collision between electrons 1,2—>3,4 whereas the one in eq. 
(2.20b) corresponds to a one phonon emission/absorption process 
via an intermediate state involving the emission and 
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reabsorption of another phonon. Other terms imply scattering 
into states with one electron plus two phonons and other 
processes leading finally to one electron and one phonon. 

The full contribution corresponding to the term in eq. 
(2.20a) is 

J H I T I T 1 ' J 

x \hf i i < r ( i r S l A ) < r ( 5 , - i . , % ) - I — 
j n 2y 1 

* [ U ' - L H ' - U • L F * C ' - U J W - ( 2 - 2 1 ) 

We recall that 

r 

P crc^.t,) ,
 4

 . , Ri (2.22) 

7 2T» u- *] 

where J> Cq, u») is the (retarded or advanced) phonon propa-
gator. Hence the -rj tj integrations just give a factor 

i ' '2 

8 4 ^ i - t i . v i ) v i * ) ( 2 - 2 3 ) 

The thermal occupation factors and the energy conserving delta 
function restrict I , \'%i I, I ̂  q | 4 Max { I I, kBT} . 
As Max ^ ^ / f°r most values of fe? and £3 we have 
Max | 11J j feBT } ^ R̂.-ftj > Ri in which case we can 
take the zero frequency limit of the phonon propagators in eq. 
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(2 . 23) . Noting that 

& 3>%o) -- i^i) (2.24) 

we get 

z " ' ( b, | ) = -u ( ̂  ^ 

» [ I I H I PC 
j(2nu2ll) xtt 1 1 1 

(2.25) 

where the factors (v^/v^) are absorbed in the matrix elements 
as before. 

This expression, apart from the first line, is in fact 
entirely identical to the contribution calculated in section 
2.2. This is easily seen by inserting eq. (2.14) in eq. (2.12) 
and the resulting expression in eq. (2.1). The arguments we 
applied to get eq. (2.16) now lead to 

jizn)* un)* j ; 3 j 
V . V, x 

4 j, h ) t1 •-f, ) * j, l - ) ] * ( id s -

(2.26) 

which is precisely the exchange partner of eq. (2.16) . 
The sum of these two contributions to the quasiparticle 

relaxation rate is, 
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3 z a*, Z4 

(2.27) 

The effective transition probability (summed over the spins 

3<2' —3 a n c 3 ^ s 

v * (2.28) 

This can be written as (Baym and Pethick 19 78) 

(j(lW370 = i un( ̂  f (2.29) 
tr h 

where ^ and w , the scattering probabilities for spin 1 
and 2 parallel and antiparallel, are given by 

(Jff » 2n[j p . * (2.30a) 

U n = MZ.Z.Z.*.. l^Krk.,!1 1 1 (2.30b) " F / T O L V L ' 1 
v l . j 

The factor £ -in eq. (2.29) accounts for the fact that we 
must only sum over distinguishable states of the electrons 3 
and 4. In eqs. (2.30) we also used the conservation of momentum 

= - n,, and invariance under permutation of k^ 
and k.4 in the integral in eq. (2.27) . Equations (2.30) are the 
ones proposed by MacDonald, Taylor and Geldart (1981) , except 
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for the quasiparticle renormalization factors. 
The integral in the right hand side of eq. (2.3 0) is 

discussed in detail in Baym and Pethick (1 9 78) . The thermal 
occupation factors and the delta-function restrict 

l < v > ^ ' h e n c s f o r j ^ < < k * t 

we obtain a kgT factor for each of the , ̂ ^ integrations. 
The geometry of the scattering is illustrated in Fig. 2.6. The 
momenta have all modules k_ to within correction of order k^T. 

r a 

The angle between k^ and the total momentum is fixed by 
momentum conservation to be where 9 is the angle 
between k^ and k_2. Thus the scattering probability becomes 
a function of the angle 9 and •- the angle between the 
planes of the initial and final momenta. 

The result one obtains is then or I % J / 

_L . 5? A {2 3 1 ) 

p 

Recalling that Wol^vyl / is of order one for most 
metals, we can estimate this term to be of order 

J _ ~ ~ (2.32) 
x^it) €p

 ef 9d 

We see then that this contribution from virtual phonon 
exchange dominates real phonon scattering (m 
for T < (V eF> ^ > i.e. for temperatures below a few percent 
of the Debye temperature. 

It remains to be shown that the other terms arising from 
the diagram of Fig. 2.5 are small. For purposes of illustration 
we consider the one-phonon term in eq. (2.20b) . 



/ 
/ 

f i g 2 . 6 

Geometry of an electron-electron scattering 
event in a degenerate Fermi gas. Conservation 
of energy and the Fermi exclusion principle 
restrict all momenta to the vicinity of 
Conservation of momenta then imposes 0, . 
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iir tir it 1 ' 1 1 " [J (an)1' lit in m 

The term outside the curly brackets is identical to that 
found in eq. (2.1) for Fig. 2.2(a). We compare the term in 
curly brackets with unity which appears in its place in eq. 

(2.1). Doing the ^^ integration we get for this term 

1 J )(*») zT% -1 - 1 

, + [ . (u. 6 ( s i , 
w \ 

where G is the electronic Green function. Apart from the 
factor - fc* this is just the real part of 
the self-energy Z^i**,^) as calculated from the diagram 
of section 2.2. For most values of k 2, k^ w e have 

" v ^ . j r €f a n d s o 

and we estimate this factor to be of order 

>1 € f € p 

In fact, what we have just calculated is the lowest order 
vertex correction (see Fig. 2.1(b)) and so, on the basis of 
usual beliefs, it is not surprising that it is of order v^/e^ 
But, as we have seen, not all contributions from the diagram 
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of Fig. 2.5 are negligible at low temperatures. In the next 
paragraph we discuss more carefully our choice of diagrams and 
give what we believe to be the correct statement of Migdal1s 
theorem. 

2.4 Physical Interpretation 
The quasiparticle scattering rate may be viewed as made 

up of a sum of transition probabilities of the injected electron 
plus background into all possible final states - one electron 
and one phonon, one electron and two phonons, electron and 
electron-hole pair, etc. The contribution of any diagram to 
the imaginary part of the self-energy breaks up into a sum of 
terms, each involving an energy conserving delta-function and 
appropriate thermal occupation factors that identify the 
corresponding scattering process. In the self-energy diagrams 
these final scattering states appear as intermediate states for 
one or more of the possible time orderings. There is a subtlety 
involved in the use of renormalized propagators insofar as the 
intermediate states involved may not be obvious from the 
diagrams. For instance, we saw mathematically in section 2.2 that 
the diagram of Fig. 2.2(a) includes, as effective scattered 

final states, ones containing an electron plus electron-hole 
pair. This becomes pictorially more apparent if we consider 
one of the unrenormalized diagrams making up Fig. 2.2(a); this 
is done in Fig. .2.7. 

Indeed, the dominant processes at*low temperatures are 
precisely the ones corresponding to final states with an 
electron plus an electron-hole pair, just as for direct electron-
electron scattering. The diagram of Fig.Z.7 describes such a 
process mediated by the exchange of a renormalized phonon with 
bare vertices. We can draw the diagram of Fig.25 in a way that 



FIG 2.7 

Electron self-energy diagram included in the renormalized 
diagram of Fig. 2.2(a) but drawn to emphasize the inclusion * 
of an intermediate state having one electron and an electron-
hole pair. The phonon lines are unrenormalized in this 
figure. 
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shows that it also includes the same type of process and so 
should be of the same order (Fig. 2.8(a)). As we have already 
noted, the diagram of Fig. 25 also includes other contributions 
arising from scattering to different final states - one 
electron plus phonon, one electron plus two phonons, etc. - see 
Figs.2.8(b) and2.8(c). These contributions are, however, of 
higher order in T or have vertex insertions which reduce 

their value by a factor V /€«- . For example, the one-phonon 
3> F 

term we analysed in section 2.3 does give a T2 contribution 
(the term outside curly brackets in eq. (2.33) is identical 
to the term calculated in section 2.2) but the electron-electron 
effective interaction now contains a vertex insertion, so this 
term is of order (vj>/€f )* (T/ep)X ^ . 

In the following chapter we shall carry these considerations 
a little further and include also Coulomb interactions. We 
shall see that eq. (2.27) does give the dominant low temperature 
contribution to the quasiparticle inverse lifetime to within 
corrections smaller by a factor . 

At this point we would like to stress that the quasiparticle 
inverse lifetime, although strictly an equilibrium quantity, can 
be calculated from a transport equation by linearizing the 
collision integral about a change in occupation of a single 
state. We noted before that eq. (2.27) is exactly what we 
would obtain from an electron-electron collision integral. 
It is quite certain that if we were to derive a transport 
equation in the manner of Kadanoff and Baym (1963) we would 
obtain a Boltzmann equation in which, as well as the usual 
electron-phonon collision integral (Prange and Kadanoff 1964) 
arising from the on shell part of , rj ~ + v^ there 
would be an effective electron-electron collision integral 
with a phonon exchange term arising from the low frequency, 
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(Q) 

> - i > ' > > 

(b) (c) 

FIG 2.8 

Diagram of Fig. 2.5 redrawn in various 
ways to emphasize several possible final 
states: 

(a) Electron plus electron-hole pair 
(b) Electron plus phonon 
(c) Electron plus two phonons 
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off-shell region of CTC^,^) , \i\\ in the diagram of 
Fig. 2.2(a) and from the diagram of Fig. 2.5. In the presence 
of Umklapp scattering - our results would certainly go through 
with minor modifications - such a term would contribute to the 
usual electron-electron T2 contribution to the resistivity as 
MacDonald suggested. 
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CHAPTER 3 

DIRECT AND PHONON MEDIATED INTERACTIONS 

It was shown in the previous chapter that, at low 
temperatures, the dominant contribution to the electronic 
quasiparticle relaxation rate, due to electron-phonon 
interactions, is due to scattering into states with one 
electron plus a single electron-hole pair, mediated by the 
exchange of a virtual phonon. The same scattering processes 
are known to be dominant for direct electron-electron 
interactions. We shall use this fact to derive a formal 
expression for the effective electron-electron scattering 
probability in the presence of Coulomb and electron-phonon 
interactions. 

3.1 The Scattering Amplitude and the Four-point Vertex Function 
The contribution of any diagram to the imaginary part of 

the electronic self-energy is a sum of terms corresponding to 
each of the intermediate states contained in the diagram. 
These states are defined as sets of propagators, such that, 
when cut, the diagram falls into two - only two - parts, each 
linked to one of the external vertices. The contribution of 
each such intermediate state is identified by a delta-function 
which conserves energy between the initial single particle state 
plus background and the intermediate state itself (for proof of 
this see Langer (1961) or Appendix B). To obtain the dominant 
low temperature behaviour of the quasiparticle relaxation rate 
we need to isolate the terms arising from the intermediate 
states with one electron and an electron-hole pair. A general 
diagram with such a state is shown in Fig. 3.1. We assume now 
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FIG 3.1 

A general diagram with an intermediate state with 
an electron and an electron-hole pair. By 
conservation of frequency and momentum coi € - ex- = o 

\ 40 5 m 
and + • 
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that the phonon lines are unrenormalized so that all such 
states appear explicitly in the diagram; electron propagators, 
however, are fully renormalized as before. We label the three 
propagators of the intermediate state with different Matsubara 
frequencies and ensure frequency conservation with the Kronecker 
delta S, 

The frequency sums to be performed have the form 

5 ' T i { , ' V t i e } ) T » ( £ u i ' { " } ) 

A x 
h ' v - * * ( 3 . 1 ) 

where and T^ are products of energy denominators which are 
linear combinations, with coefficients 0, ±1, of the external 
frequency -Ciq ; «| t Lq ^ and the spectral 
frequencies of the propagators occurring in the diagrams T 
and p̂  . These are obtained from the original diagram by 
deleting the three propagators of the intermediate state. 
When we sum over the frequencies tbie usual method 
of contour integration we pick up contributions from the poles 
which are explicitly displayed in eq. (3.1) and from the poles 
in TP and T . We shall see that the former give the term 

1 w 
associated with this intermediate state. Denoting their 
contribution by S , 

s'- c - H ^ / q T, T 

x [ a t -t 
r 
0 §z '"Vis I, 

(3.2) 
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where we used 

/f5 tv nx 
p S = j d x X 

1,0 J o 

"V̂  being a boson Matsubara frequency. The frequency summation 
is now straightforward, 

s ' - - c - ) t ( i ^ f j j ) ^ ( ^ { s } ) 

p U v f x - V S J x 

= c-) 7 , 1 tu>, d ^ W ' M ^ ) * 

Using 
iu, (5 

-e, r -i 

a p v 

one obtains 

t c c u , , 

— : s z > ( 3 . 5 

It is important to note that no other contribution to S 
contains the energy denominator iu) * fc - "ft - fc . If, in 
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the frequency sums in eq. (3.1) we pick one of the poles in T^ 
or T2 we cannot generate a denominator which only involves the 
external frequency and the three spectral frequencies 
and ^ . And, in S1 this energy denominator does not occur 
either in T^ ( iu^ , { | ̂  ) o r T

2 ^ > { I } ^ because all the 
energy denominators in T^ and T2 contain at least another 
spectral frequency. 

We conclude then that the total contribution to the 
imaginary part of the self-energy associated with the inter-
mediate state shown is 

lu'\ , ? . ) > 15- ( i i N 4h [ i l s i d ? 
1 "'(ait)s quo* j lit in itt 

« ft Q ( M , •> ' ; ̂ . ^ ( V V - N . V Y . V - s 1 0 

(3.6) 

where ^ ' V ^ - S j ; ^(fe-V) and QtJSi.^O 
are the contributions to the electronic four-point function 
from the diagrams Q and V after the external frequencies 
are continued to real values • ^ convenient 
at this point to write the spin sums explicitly. We assume 
that spin cr of the incoming particle with momentum t, is 
up (the result is independent of â  ). By conservation of 
spin if v is up, so are <7* and c . if c and 0" are anti-

~ % 3 - i t z. 

parallel, so are and . Writing the spin sums explicitly 
only changes the ^ , f̂  factors in eq. (3.6) which now read 
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R* r r2 — » r v c ^ i ) *< r u , ^ ) 

+ ^ fc (3.7) 

where the arrows denote the spins of the incoming electrons in 
each of E and 17 . 1 i 

Summing over all intermediate states of this type is 
equivalent to summing over all T̂  and P. • Tbie result is 

k m ) = ± f d b ii- ii. 
. * --*1 Z Ju*^ in xir 

xj * («. r 7 \ b-, D ) 1 } 

« U M J C ' - L ) * f s U - f x ) ] <3.8) 

ntr,0v 
where ^ r f ^ g ^ - ^ and I ; J* 
is the electronic four-point function with the external 
Matsubara frequencies analytically continued to real values. 
It is defined as the sum of all Feynman diagrams with four 
external electron lines. External lines, external momentum 
and frequency conserving delta functions are excluded from 
the definition of PflS',̂ ;) (see Fig. 3.2) . The 1/2 factor 
in the parallel spin term accounts for the fact that exchanging 
the intermediate electron lines 3,4 in both four-point functions 
leads to the same self-energy diagram. Permuting these lines 
in the case of antiparallel spin leads to a diagram which vio-
lates spin conservation. We also used the relation 
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FIG 3.2 

<r a; 
The four point vertex function PCUOV* ; tfc<t) 
By conservation of momentum frequency and spin, 
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r* r ( 1,1 ) = fk p 

which is guaranteed by time reversal symmetry. 
The four-point vertex function is well behaved and slowly 

varying for frequencies close to zero (the fermi energy). 
Hence, to find the dominant, low temperature, low frequency 
behaviour of / we may use the quasiparticle 
approximation for the spectral functions (eq. (2.4)). This is 
justified by arguments similar to those presented in Chapter 2. 
We obtain for the relaxation rate 

u y 
\<-%) " j cllo3 cin)1 

* ¥ V S ' S ) 

where, now h "f ) • 
We recognize again the familiar structure of the Boltzmann 

electron-electron collision integral with a transition probability 
given by 

0*g" / .—-——— 
0) ' 31) -- I r ' ( Rc, (3.10) 

This identification of the scattering amplitude with the 
four-point vertex function for electron-electron interactions 
can be found in Nozieres (1964) or AGD where it is derived by 
completely different methods. To the best of our knowledge an 
explicit derivation of eq. (3.9) with electron-phonon interaction 



included has not been presented before. 

3.2 The Scattering Amplitude and Migdal's Theorem 
The remaining task is to calculate the four-pomr vertex 

function f ( h', ) . Fortunately this has already been 
done by Rice (1968) and Prange and Sachs (1967). 

Rice defines i ( t € -) as the sum of a Coulomb 
term (all diagrams with no phonon lines) and a phonon term (all 
diagrams that include at least one phonon line). He then uses 
arguments similar to those used by Migdal in his calculation of 
vertex corrections, to show that the phonon term is given by the 
diagrams of Fig. 3.3, i.e. a single renormalized phonon 
propagator with electron-phonon vertices renormalized with 
respect to Coulomb interactions. 

Hence 

Rft, -- - f i l ^ l T - z | I* ) (3.11a) 
V i v * . 1 

(U ^ ^ * ^ z (3.11b) 
%' 

where we have taken the limit ^ ° which is a valid 
approximation given that we are interested in the dominant low 
temperature behaviour. Note that for electron-phonon interactions 
alone this result is what we found in Chapter 2 (see eqs. (2.30)) . 
It should be said that nothing in our analysis suggests that 
Migdal's arguments should fail, in the estimation of corrections 
to the four-point function, as they do in the calculation of the 
self-energy. The problem with the latter one is that sufficient" 
account of the dominant type of scattering events was not taken. 
When that is done it becomes very clear that the diagram of 



(a) (b) 

f i g 3 . 3 

The electron-phonon contribution to the four-point vertex 
function I (1,2; 3,4) to lowest order in 
For antiparallel spins only one term is present. 
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Fig. 2.5 is in fact of the same order as that of Fig. 2.2(a). 
Unfortunately, for the Coulomb term, no reasonable 

expansion parameter, such as / , exists. The usual 
approximation is to take for the four-point vertex function 
the Thomas-Fermi potential 

fc. r c
T ! LCU-»s») -
loolomw 

(3.12a) 

.u (3.12b) 

where 

TF = 
atift/ 

— 1 2 
where fe. is the Debye screening radius ( K. = SliDo z ) 

The full scattering probability is then 

l t c = 2ir { - / [ ( v
t f

( - « • ^ - v 

(3.13a) 

cj u 

it,-* _ 5 
(3.13b) 

The Coulomb and the phonon exchange interaction appear with 
opposite signs because the first is repulsive and the latter is 
attractive. Equations (3.13) apart from the quasiparticle 
renormalization factors are the ones proposed by MacDonald, Taylor 
and Geldart (1981). These factors contain Coulomb and electron-



45. 

phonon contributions. 
In conclusion we would say that while we cannot comment 

on the accuracy of the calculations of MacDonald and co-workers 
we find that the physical ideas behind them are physically 
sound and perfectly justified from a microscopic point of view. 
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CHAPTER 4 

WEAK LOCALIZATION AND QUASIPARTICLE LIFETIMES IN 
TWO DIMENSIONAL METALS 

4.1 Introduction 
It has been known for some time that static impurity 

scattering can alter the electron-electron and electron-
phonon scattering rates in metals (Schmid 1973, 1974; Keck 
and Schmid 19 76; Bergmann 1971; Al'tschuler 1978; Al'tschuler 
and Aronov 19 79). 

As was discussed in the previous chapters, in clean 
metals the electron-electron scattering rate, at low 
temperatures, is of order (kDT)2/ . Schmid (1974) showed 

d r 
that in the presence of static impurity scattering one obtains 

3 /2 
an additional correction which varies as T and dominates 
the previous term at low enough temperatures. Though very 
interesting, this result failed to arouse attention, possibly 
because the inelastic scattering rate was not directly 
accessible to experimental measurement, more likely because 
physicists' minds were turned elsewhere. 

However, recent advances in the theory of weakly 
disordered metals have changed this situation dramatically. 

On the one hand, following the scaling theory of 
localization of Abrahams, Anderson, Licciardello and 
Ramakrishnan (1979), we now have a way of measuring experi-
mentally the inelastic scattering rate, , in two 
dimensions (2D) (silicon inversion layers, thin films). On 
the other hand, the interplay between interactions and 
impurity scattering which is responsible for the result 
discovered by Schmid, has been found to lead to much more 



dramatic consequences in the transport properties of disordered 
metals, following the work of Al'tschuler and Aronov (1979), 
Al1tschuler, Aronov and Lee (1980) and Fukuyama (1980). 

In this chapter we will try to review some aspects of 
this field which are more relevant to the problem of quasi-
particle lifetimes. For more details the reader is referred 
to the recent extensive review of Fukuyama (1 983) . 

4.2 Impurity Scattering Perturbation Theory and Diffusive 
Poles 
It should now come as a surprise to no one that the 

effect of disorder on the properties of a metal can be so 
drastic that it can turn it into an insulator by localizing 
the single particle states (Anderson 1958). We are interested 
here, though, in properties of systems which have high 
electrical conductivity so that the effect of impurities can 
be treated as a perturbation of the clean metal. This requires 
that k_-t >> 1 where £ is the impurity mean free path, i.e. 

r 
i. 3 is the average momentum uncertainty of an energy eigen-

state at the Fermi level. 
We shall work with a simple model Hamiltonian of free 

electrons scattered by randomly diluted impurities with short 
range potentials (interactions will be considered later), 

K -- l + VB L p £ c rt- - ) 

= l € r• cfc , 1- zl l y t c ; v c r r 
— i 

(4.1) 
where p is a random variable, taking values 1,0 with 
probabilities p, 1-p where p is the atomic concentration of 
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impurities (p << 1). The volume of the sample is XL, 

" k2/2m and R ̂  are the positions of the sites of a 
lattice. The perturbation theory and Feynman diagrams for 
this Hamiltonian, first introduced by Edwards (1958), have 
been described in detail in several textbooks (AGD 1965, 
Doniach and Sondheimer 1974, Rickayzen 1980). 

We assume that the scattering by a single impurity can 
be treated in the Born approximation. The final results 
expressed in terms of the lifetime of a momentum state x or 
the mean free path t = v F X are still valid for strong single 
impurity potentials. This simplified model is most often 
used in this field and reveals the essential physics without 
unnecessary complicated algebra. 

The basic vertex, after averaging over impurities, is 
t z 

drawn in Fig. 4.1 and corresponds to a factor XL - C V0 

where c is the volume concentration of impurities. It 
carries finite momentum but zero frequency. 

The simplest self-energy diagram is shown in Fig. 4.2(a) 
(solid lines denote the impurity averaged Green's function) 
and gives, 

7L ( = - t-m, 
2 1 

(4.2) 

(an additional real constant is absorbed in the chemical 
potential). The lifetime of a momentum state, , is given 
by 

_ l . -zTi n„ u2-
X 

(4.3) 

where nQ is the one-spin density of states per unit volume. 
The impurity averaged Green's function is 



FIG 4.1 

Basic impurity vertex after averaging over 
impurity configurations. It carries momentum 
but no frequency. 
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[a) Self-energy diagram to leading order 

in 1/k t 
(b) 1/k_t correction to (a) r 
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( 4- 4> 
° w5. * z sĝ e** 

with C0K : 
A first order correction to the diagram of Fig. 4.2(a) 

is shown in Fig. 4.2(b). Compared to the previous one, this 
diagram involves an additional factor 

f jd ' 

The integral 

I (9; ie*.*'^, a f — , GC* >€*) (4.5) 
T J ttTT)*" * 

is studied in detail in Appendix C. In particular it is shown 
that for € m ( o it is at least of order 4/Rj.t (eq. 
C8). Other corrections to the diagram of Fig. 4.2(a) can 
similarly be shown to be of order . Thus the self-energy 
is given by eqs. (4.2) and (4.3) to leading order in l/fep̂  • 

The recent developments in the theory of weakly dis-
ordered metals stem largely from the recognition of the 
importance of two singularities in the two particle Green's 
function which will now be described. 

Consider the ladder diagram series shown in Fig. 4.3. 
Clearly Dq is independent of k and k' and we have 

3>0C = ^ 

2. 
+ 0 

which has the solution 
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FIG 4.3 

The particle-hole diffusion propagator D 
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ol gckw.ifchit^&csi"^) 
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u1 

(4.7) 

We have seen before that ie^+iu^} i6»n ) is of order Al^t 
for fc^ U m + ua)> o (eq. (C8) ) . However, for < Q 

and when the poles of the two Green's functions come together, 
i.e. when <| 4 u ^ o this integral tends to unity and D q diverges 
More precisely, (eq. (C13b)), for côTL 

where D = 
Vx/dl -- *fl/<L ttv is the diffusion constant, v 

the Fermi velocity and d the dimensionality. 
Thus for ( S-Yn+l*̂ ) <0 , Cj i t u^x <£± 

3>0 s - (4.8) 
m n . - c 2 , £ l u t l 

(Equation (4.3) was used to express u2 in terms of X). 
This singularity is usually referred to as the particle-

hole diffusive pole. The particle-particle pole is shown in 
Fig. 4.4. Clearly 

c 0 c g ; ( o = — ; — ii: 

/(iti^ - ~ * 

u1 

1 - (4-9> 
Hence Co C^ ; ie»>v+lw{, • ^ a s a P°le exactly the same form 

as D q, 
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FIG 4.4 

The particle-particle diffusion propagator Cq 
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C0Cq;U^iuiL.i'ft*)* 1 ; ^Ci^u) )<o (4.10) 
* w m ^ i u l o c j 1 ] 

1 u3tc . 

We can redraw one of the ladder diaarams included in C o 
in the particle-hole channel (Fig. 4.6) and one easily sees, 
then, that CQ corresponds to the series of maximally crossed 
diagrams. The particle-particle singularity occurs when the 
sum of the momenta of the two incoming particles is small, 
whereas the particle-hole singularity occurs when the incoming 
particle and hole states have a small momentum difference. 

The way these singularities affect the transport propertie 
is well illustrated by a calculation of the conductivity. Kubo 
has shown that (Kubo 1957) 

a 
Rsi O-Ciol » - ^ 2 _L ZL \ uO (4.11) 

Lio W- SL * 

where , i'U. ) is the (imaginary) time fourier trans-
form of the Green's function JV° C !:, "O - " L , <°) ] > 

a 
and is the number operator of the k state. 

Given an approximation for the self-energy, it is possible 
to derive a consistent approximation for any two particle Green 
function, in the sense that particle conservation is respected, 
following the rules proposed by Baym and Kadanoff (1961) and 
Baym (196 2). From the diagram of Fig. 4.2(a) we obtain for O" 
the diagrams of Fig. 4.6. In the case of delta-function 
impurity potentials only the first diagram contributes. The 
Dq propagator does not depend on the external momenta k, k' and 

L g / jsl,i6wm&]i ] g c & , i e o = o 

One obtains easily (AGD 1965, Rickayzen 1980) 
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jc+q vn. I 
> ^ 

X 

K x- y ^ 
'7n-

FIG 4.5 

A diagram included in CQ redrawn in 
the particle-hole channel 

V 
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FIG 4.6 

Conductivity diagrams consistent with the approximation of 
Fig. 4.2(a) for the self-energy. Only (a) contributes to 
for delta-function impurity potentials . 
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"ttx 

^ m iw 3 t> . Xt^ (4.12a) 

it ik i2> (4.12b) 
it 

which is the classical result of Boltzmann's equation. 
Consider, however, the effect of maximally crossed 

diagrams of Fig. 4.7 (Gorkov, Larkin and Khmelnitzkii 19 79, 
Abrahams and Ramakrishnan 1980) 

<j 
&<TM -- - uL & itt 

I U J (iO^ UTS)** 

* 1 Z- , 

* + ; ie^) G(k, I'e^) C0C^ ie^io^ f jfe>w) 

(4.13) 

Strictly speaking, the Green's functions should be modified in 
order to ensure particle conservation. But we have seen that 
all corrections to x are of order Thus to leading 
order in we can use the Green's functions given by 
eqs. (4.4) and (4.3). When the particle-particle 
propagator CQ has a pole of the form 4/Cû -t . In 2D 
the q integral will diverge logarithmically as w 0 . The 
singular term is 

•Coom1 J f ) 2 

z 

(4.14) 
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FIG 4.7 

Contribution of maximally crossed diagrams to 
the conductivity. 
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where we have taken the limit q, d. 6 everywhere except 
in CQ. The k integral Can easily be done by contour 
integration (see Appendix D) and we obtain after analytic 
continuation i <0̂  to+10* 

i ' 1 
or 5o*tio) = - i 

tm. it -itj + 

c 
/ 

. jL\ k f t 
o 
Aqq * (4.15) 

1 -ico + 3><f 
The logarithmically divergent term is, 

cScr(io) - - i l U (4.16) 
zir*' a)-c 

For a finite size system of linear dimension L the lower 
— 1 - x limit of the q integral in eq. (4.15) is L and so, for u)«3>L 

<5ctCl) * - £l JU L (4.17) 
tt1 I 

Quite obviously this logarithmic dependence cannot be 
valid for arbitrarily small frequencies or large lengths or O" 
would become negative. This point will be clarified in the 
next section. Here, however, we would like to stress some 
features of this calculation which will occur again in the 
calculations presented in the next chapter. 

Notice that we isolated the term containing the diffusive 
singularity and ignored all other corrections. The diffusive 
pole leads to a more singular frequency dependence than that 
of the classical Boltzmann term and so, even when >> 1, 

r 
the diagrams of Fig. 4.7 must be taken into account. But non-
singular corrections of order 1/kpt can and have been neglected 
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They would only alter the classical result or the coefficient 
of the logarithmic term by negligible amounts. Thus, when 
calculating any physical quantity, one must consider carefully 
the way in which the diffusive poles of eqs. (4.8) and (4.10) 
can affect the corresponding temperature or frequency 
dependences. But among the diagrams contributing to a term 
with a given frequency or temperature dependence, one need 
only consider the leading 1/k_£ contributions. These 

r 
considerations will be amply illustrated in the following 
chapter. 

4.3 Weak Localization and the Inelastic Scattering Time 
The logarithmic length dependence of the conductivity 

of eq. (4.17) was anticipated by the scaling theory' of 
localization of Abrahams, Anderson, Licciardello and 
Ramakrishnan ( 1 979) . They argued that in 2D all states are 
localized and for a large enough sample, L >> ̂  , where 
is the localization length, the conductivity will always decay 
exponentially with length 

- l / f 
<r u ) ~ £ (4.18) 

For weak disorder the localization length can be extremely 
o m 

large though ^ t 4 . Hence, for shorter length scales, 
L << , the system will have a metallic-like behaviour with 
high conductivity, which they found to have the form 

<T(L)/Z I qlL) -- g U.) - q Aw (i ) (4.19) 
^ to 

where Lq is the distance at which scaling begins to be valid 
and g is a constant of order unity. The perturbative result a """ 
derived in the last section (eq. 4.17) should only be valid in 



the regime where the conductivity is large, i.e. the weak 
localization regime. One has then, Lq= I , = kp̂ /iTT 
and g * 4/tt* . 

The inelastic scattering time comes in when we consider 
the system at finite temperatures. Thouless (1977) and 
Anderson, Abrahams and Ramakrishnan (1979) argued that 
between inelastic scattering events an electron diffuses a 
distance given by 

l- 5 (4.20) 

after which it can be scattered into another eigenstate and 
continue to propagate. So at finite temperatures the effective 
length scale of the system is and 

ScTCT) = - £ In, r - -L JU lib (4.21) 
K7- J- X 

- p 
Normally "Ĉ *" a t low temperatures, and we get 

S crCT) - b JU T X (4.22) 
2iti r 

We could then expect that a measurement of this logarithmic 
temperature correction to the Boltzmann conductivity would pro-
vide an experimental determination of T*^ . In practice, the 
situation is complicated by the fact that, when interactions 
are taken into account, there are other logarithmic corrections 
to the conductivity which do not depend on (Al'tschuler, 
Aronov and Lee 1980; Fukuyama 1980). They arise also from 
the diffusive poles described in section 4.2. (See Fukuyama 
1983 for details). These two effects, localization and inter-
actions, are found to co-exist experimentally (Pepper 1981) . 
However, unlike the interaction effect, the localization one 
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is strongly affected by weak magnetic fields, and it turns 
out to be possible to obtain from magnetoresistance 
measurements (Kawaguchi and Kawaji 1980, Uren, Davies, Kaveh 
and Pepper 1981, Wheeler 1981, Bergmann 1982). These 
experimental results will be discussed in the following 
chapter. 

4.4 Inelastic Scattering Time in Two Dimensions 
Recently, Abrahams, Anderson, Lee and Ramakrishnan 

(AALR, 1981) calculated the inelastic scattering time in 2D 
using a method based on exact impurity eigenstates. This 
method does not require the derivation of a kinetic equation 
as in the previous calculations of Schmid (1973), Al'tschuler 
(1978) and Al'tschuler and Aronov (1979 ). The method used 
in this thesis is an extension of this one, so we shall now 
briefly describe the calculation of AALR. 

In the absence of interactions the Hamiltonian of eq. 
(4.9) has a set of exact one electron eigenstates (rl . 

cc 
When interactions are present these states acquire a finite 
lifetime. If we describe the effect of interactions by a self-
energy, which we assume to be dominated by the diagonal elements, 

(t^Ytu) ' the quasiparticle energies and inverse life-
times Q are given, as in normal Fermi liquid theory, by 

w « + a . l g . ) 

r • 2. r i a,) 
OL * ct <* ' 

(4.23b) 

(4.23a) 

where 

z o< (4.24) 



However, these quantities depend on the particular configuration 
of impurities. The average inverse lifetime of a state with 
energy E with respect to the Fermi surface should then be 

r u . T ) = _L- < z. z , (4.25) 
o « o* av 

Or, to lowest order in the interactions, simply 

rfe.T) * J - / Z. P (CO ^ ift^-e)) (4.26) 
XI n0 « " ** 

where <...> denotes an average over impurity configurations. 
The inelastic scattering rate "Ĉ  is, strictly, 

- L . ZP (4.27) 

The reason for the factor two is that P , as defined in 
eq. (4.23b), is the rate of decay of the amplitude of finding 
a particle in state fr whereas 

4/t- is the rate of decay of the 
corresponding probability, i.e. of the occupation number of 
state oc .. This difference is often overlooked in the literature 
(author included). 

Abrahams, Anderson, Lee and Ramakrishnan work directly 
from this definition to calculate T to lowest order in the 
averaged screened Coulomb interaction (Fig. 4.8). One has 

Lii-tr*.): L i L V ^ U u J G b. (£€*.ttut) (4.28) 
p P U4 f" 1 p 

with G 0pUe^) the unperturbed Green's function for state p , 

g o & u * y n ) r - - (4.29) 

and the interaction V ( ̂ a ), 



Vc 

* p a 

FIG 4.8 

Self-energy diagram for an exact impurity 
eigenstate to lowest order in the 
averaged screened Coulomb interaction . 
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r A A * * r r j icrj _ 

• t ( r ' i V ! ) • 

Vc (q, -c ) is the averaged screened Coulomb interaction 

in ev q 

i- ^isfttu.uo q 

(4.30) 

The polarization insertion "IT ( q., i ) is discussed in 
Appendix E. After performing the frequency sum and doing the 
analytic continuation (o -L o* one obtains for the 
imaginary part of 2-

-no 
p l(o) =: ^ z - ( a u cq}|1 [ m c n ^ 

1 p <p 4 1 j ' p jutl)2 

with 

f ol2 r t + cd + cr) 

Averaging over impurity configurations 

i i - < z-jin o •< 

f \l 

(ibjlj 
(4.31) 

where D (q; E, E') is the space fourier transform of the 
correlation function 
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* * 

3>(rr'-, M ' ) 5 - < t/:) t cr) i(wd-c) ̂ p - ^ l v (4.32) 

This function, as defined, does not involve interactions and can 
be calculated by standard impurity perturbation techniques. In 
fact, AALR show that it is related to the spectral density of 
the density-density correlation function. In a disordered 
metal, density fluctuations decay by diffusion and from that 
alone one can show that, (Forster 1975) 

3 C o ; -- £ - e ' ) * _ ( 4 . 3 3 ) 
* u-e')1 

This divergence-of D (g,1) ) at low g, low tj causes P(E,u) 
to diverge at (J = E. (We shall later rederive eq. ( 4 . 3 1 ) and 
discuss it in greater detail). One gets 

= 1 1 1 An, € ( 4 . 3 4 ) 
Z*tl (u-e)2* 

where £ = DC2 and )C is the inverse screening radius 
t = =• ZTix . To cure the divergence of eq. ( 4 . 3 4 ) 

on the energy shell, AALR state that in a higher order 
calculation one would have to take into account the quasiparticle 
energy shift which they claim to be 

& ~ feoT ( 4 . 3 5 ) 
z m 

The result they obtain, in a way which is not clear to me, is 

p * U h 
r 

( 4 . 3 6 ) 
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where (kp £ )"* 6 One cannot obtain the logarithmic factor 
in eq. (4.36) from the kinetic equations of Schmid (1973) or 
Al'tschuler (1978) at least without substantial modification. 
One obtains a divergence with no obvious indication of how to 
renormalize it. 

However, Fukuyama and Abrahams (1983) rightly pointed out 
that the inelastic scattering time that appears as a cutoff in 
weak localization is not, strictly, the single particle life-
time, but the lifetime of the particle-particle diffusion 
propagator, which for an interacting system will have the form, 
( ( £*-kja) i0 ) 

i€ m*iu 4 lit m). 1 (4.37) 
2tih0xl • + i j 

<»c 

It is clear that inserting this expression in eq. (4.15) one 
obtains eq. (4.21) , with T replaced by X-j_oc / in the limit 
Coxloc << 1. Fukuyama and Abrahams calculated X using 
the standard impurity perturbation technique in momentum space 
(This calculation will be further discussed in Chapter 5) and 
obtained exactly the same-result as AALR for P 

JL - ZLL u h (4.38) 
t u c " m r 

As Fukuyama and Abrahams point out, this result is, in a sense, 
surprising. The two calculations have little in common and give 
little indication of why their results should be identical. In 

i From the argument of AALR it would seem that the natural 
thing to do is to replace u) -E by & in which case one gets 
T = (k T/ZfcpE )-tiMT2/T) withk£?2= . In the following 
chapter we shall present a self consistent calculation of r in 
which we obtain this result. But the divergence is cut off by 
P , not the quasiparticle energy shift. 



the next chapter we present a reformulation of the method of 
AALR in momentum space. We shall be able to do a self-
consistent calculation of P where the divergence in eq. (4.34) 
is automatically renormalized without the need for additional 
arguments. The result we obtain is 

P = An, Ti (4.39) 
zkft t 

where iqT, = 4 (see footnote 1). This calculation, in 
conjunction with the one by Fukuyama and Abrahams, also 
clarifies considerably the relation between P and • 
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CHAPTER 5 

SELF-CONSISTENT CALCULATION OF THE QUASIPARTICLE LIFETIME IN 
TWO-DIMENSIONAL METALS 

5.1 The Method of AALR in Momentum Space 
The calculation of Abrahams, Anderson, Lee and Ramakrishnan 

(AALR, 1981) described in the previous chapter has the 
unsatisfying feature that the average.imaginary self-energy 
diverges on the energy shell (eq. (4.34)) . Such divergences 
often arise because the propagators which appear in the Feynman 
diagrams of the self-energy are not suitably renormalized. 
Renormalizing these propagators introduces an element of self-
consistency into the calculation. We shall now present a 
reformulation of the calculation of AALR in momentum space 
which allows full use of diagrammatic techniques and accommodates, 
more easily than the original method, the self-consistent nature 
of the calculation. 

It is useful, however, to introduce the method first in its 
simpler, non self-consistent version. We start from eq. (4.26) 

inverse, 
for the average/quasiparticle/vlifetime , namely 

P(EL,T) = — < T(£) S(COd-R)> (5.1) 

The delta-function can be expressed in terms of the non-
interacting Green's function for the impurity eigenstate 

Also / the imaginary part of the self-energy, is 

V 
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p { » ) - <5.3) 
oc 21 

One can then obtain the average inverse lifetime P by suitable 
analytic continuations of the function ( ^tn ) , 

-i < 2 1 L K t w ) ^ , ' ^ - . ) ) <5-4) 
xl o» 

In fact, 

4t710 xl « 

= . R «flfl le . 0 - V W J ] 

rr fta -
= fc. [« le,e) - or l£,E)J (5.5) 

The function ( LE^*, ̂ e^) is a trace of a product of 
the matrices 21 anc^ G Q ( G

0 diagonal in the oc representation 
and 21 is assumed to be dominated by diagonal elements) and, 
hence, it is invariant under change of basis. In the momentum 
representation, 

« t i €„.. i. ) • 2l( i,*'; 1 6. . 5 i <s)>av ( 5 •6 > 
o d ' xi ^ £ 

This expression is easily given a diagrammatic 
representation. We choose for the self-energy the approximation 
of AALR, namely the lowest order term in the screened Coulomb 
interaction. Then the function cuClÊ ' is just the average 
of the diagram of Fig. 5.1. 

We shall see in the next sections that one easily recovers 
the result of AALR using this method. The divergence of 
(eq. (4.34)) disappears if the electron propagator which 



FIG 5.1 

The function <* l^m' » 
defined in eq. (5.6), is the 
impurity average of this 
diagram. 
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appears in Z ) is renormalized consistently. 
However, one cannot use eq. (5.1) as a starting definition. 
The renormalization of the propagator involves an energy shift 
as well as a lifetime. If the variable E is to be the real 
quasiparticle energy (and E = 0 the Fermi level) one must start 
from the definition of eq. (4.25) , namely, 

r ( E . T ) - <Z- ( > > < * ( £ ) > 
- f lTTr, " a v 

(5.7) 

However, the delta function £(w-e) cannot be expressed a 
in terms of Gq. It is still possible, nevertheless, to formulate 
the calculation in momentum space, albeit at the cost of some 
extra complication. 

Using eqs. (4.23), (4.24), 

s ( u - £ ) = (i^x)"1 f( u^-L-t^ie)) 
do). 

Thus, 

0< r 

(5.8) 

r ' s r < C " > * i (5.9) 

The delta-function looks like the spectral function of 
the interacting Green's function except that the imaginary 
part of the self-energy is somehow ignored. Recall that the 
self-energy, in any basis, has the following analytical 
structure 
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l ( * ) - 2 1 * u ) i ^ ^ o (5.10) 

a 
2 1 U ) IvhT- <O 

where are a n a l y t i c f u n c t i o n s . 21. l O then has 

a branch cu t on the r e a l ax i s where 

fl fc n 
2.^ ((A-Co4) - Z.* te + itf) = z l»)- Z (o) = n tio) (5.11a) 

Z-^tW-CO*) fr Z^ lunO 1 ) = Z N u ) ^ ^ 1 1 (5.11b) 

We can define a somewhat unconventional Green's function 

£ ( * ) * G 0 i l CD + GORU) Z . *U) ] (5.12) 

which gives 

r i (5.13) 
E - to . - A 16-1 1" CO1" 

cc oi 

Hence eq. (5.2) is replaced by 

s ^ - c ^ - a ^ i o ) _ ± _ [ g q ( e ) - g\e)] (5.14) 
2tk * * 

and the f u n c t i o n a (-l£ ; t fc^ ) i s 

S J . ( Z . i . l i t ™ ' ) • (5.15 

Again U t i s independent of representation and 

(5.16) 
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Equation (5.12) in the momentum basis is 

4 2 L x- (5.17) it * c i, 

and thus O can be calculated using the same diagrams 
as the interacting Green's function, except that each self-
energy insertion is to be interpreted as 

Q/l) [ Z.fl( + *)] The function <X C ifim) is 
still given by the average of the diagram of Fig. 5.1, but now 
the upper Green's function is the fully renormalized one and the 
lower one is this unconventional G. This way we can still make 
full use of the apparatus of Feynman diagrams. 

In section 5.2 we shall calculate the quasiparticle life-
time in the simplest approximation which consists of replacing 
the average of the product of the two Green's functions by the 
product of their averages. We shall use the simpler definition 
of ct ( LE^/, i£m] (eq. (5.1)) . We obtain in this approximation 
the same result as for the pure metal. 

In sections 5.3 and 5.4 we consider the effect of the 
diffusive poles described in Chapter 4 (eqs. (4.8) , (4.10)) 
in the quasiparticle lifetime. We shall recover the result of 
AALR and present the full self-consistent calculation. Finally, 
in section 5.5 we discuss some experimental results. 

5.2 Clean Limit Contribution to the Quasiparticle Lifetime 
The simplest diagram one can obtain from the average of 

the diagram of Fig. 5.1 is the one in which we replace the 
average of the product of the two Green's functions by the 
product of their averages. The diagram we obtain does not 
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contain explicitly any impurity lines. We can anticipate, 
then, that its leading 1/kpE contribution will be the result 
for the clean metal. We shall later consider corrections to 
this diagram which do contain impurity lines. Their contri-
bution must then vanish when k_E ® . We shall therefore 

F 
refer to the contribution calculated in this section as the 
clean limit contribution. 

We have 

( 5 . 1 8 ) 

The frequency sum is calculated in the usual manner 

J v c%,y)) - x.'q.q)] g j ^ 

or, in terms of the spectral functions of the electron 
propagator p (fen) and the Coulomb interaction 

( 5 . 1 9 ) 

where 
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3 r [ v ? l V D - ^ n ) ] 1 (5.21) 

From eqn. (5.19) we get 

oft e,e) -

fc*|*e) Y^.ij) , (5.22a) 

J CllO* 

. p O ^ H r ) (5.22b) 

The quasiparticle lifetime is then, 

1 f dl̂ft. 
po = — - \ — J P Cs,e) ZL Cfc.e) (5.23) 

where 

^ f S f>S*¥VV*) (5.24) 

has exactly the form we would get for the imaginary part of the 
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self-energy in the pure system. Thus, in this approximation T0 
is just a momentum average of z, c* .o weighted by a 
distribution p CB.e). 

We shall in general calculate the temperature dependence 
of P0 on the Fermi surface, i.e. put E = 0. 

It is useful to make the change of variable 
in eq. (5.24) 

l . (i.to = z l 
Att 

- Qy 

4 
dL-rj [ i!^ (rc(k-k'. y\) . (5.25) 

The spectral function depends on the momenta via 

ik-ft'l , 

ln-^\Zz Mfc' - zkk'CJD36 a )* +m k^'s^e/i (5.26) 

The range of variation of tĴ  , in eq. (5.23) is 

! < v ' lt0 

la.' J v- because the electronic 
spectral functions are lorentzians peaked at (J^so g 
with a width 1/2X . So for sm e/i > Ma* j , *6i7€Fy 
the second term of eq. (5.26) dominates and <T( ^ 
varies with f on a scale of order . We can then 
replace the electronic spectral functions by the corresponding 
delta functions 

p ck, 2u - q) (5.27) 

to get 

t <0 
r0 z 2o F,°) = ^ di, 

r a (5.28) 
rait'' hf 

where a .ft- is the element of angular integration in d 
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dimensions normalized to unity (eq. (C.3)). 
The spectral density of the Coulomb interaction 

is discussed in detail in Appendix E. It is given exactly by 

<TcCV,)- ^ (5.29) 

where t*ie bare Coulomb interaction t 

VB(<n = J ^ L • riw 3 D (5.30a) 

Z m L • 13) (5.30b) 

and Ĉ̂ .-q") and Ĉ̂ .-q") are the real and imaginary parts of 
the polarization function TTĈ , Cu^) . At low frequencies 
H^ij, is linear in and tends to a 
constant. It is shown in Appendix E that for q not too close 
to 0 or 2 k„, i.e., 

r 

j « jl « 4- s (5.31) 
2*f 

where 

S » Mo* I !2l , I (5.32) 
I €f m 3 k̂ e 

we can approximate ^c^i1)) by 

^ C ^ ) r 2 TTxc^,n) (5.33) 



8 0 . 

where V c (q), the static screened Coulomb interaction, is 

V t«) - W (5.34 
ss t 7 ~ 1- v ^ h ^ . o ) 

and 

TT^q.q) = Ti n0 JO . in 3D (5.35a) 

r i n . n ; in 2D (5.35b) 
fo- cq/zkf)1 

Using 2 KpUme/i 1 we can rewrite these results as 

"V^.T) 2 15? — ; in 3D (5.36a) 

^ _ in 2D (5.36b) 
isinbl 

In 3D then, 

2 
p - it n0 o • rT, ^ L 

i l k k p l J S l ' n e / i . 

The cutoff parameter & in the angular integration can be 
ignored and 

r = I? 91 (5.37) 
•8 «r 

with 

\ 

cjl £ in* < V» l 9 ) > (5.38) 
sin 
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The brackets denote an angular average over the Fermi surface. 
This is the result one gets for clean metals using 

Boltzmann's equation with a scattering probabi lity 2" VSJ O) 
(Baym and Pethick 19 78) . Using the Thomas-Fermi approximation 
for Vg^ (q) one can show that g 2 1 for short range effective 
interactions ( K /kri>> 1 ) where £ is the inverse screening 

r 
radius) and I(k/RF) for long range interactions 
( fc /kp<< 1) . 

In 2D the cutoff parameter in the angular integration 
cannot be ignored because the angular integral diverges near 
9-2 o , ±TT . The restriction of eq. (5.31) is equivalent to 

$ << isiV\ e/ii «i- f S « iei «ir- /$ 

and so, using = Vss(-0) to integrate 6 between 0 and "IT , 

- f& 
r / z z r o = 12: ai) 

€p J SirtLpz] 
ie ^ 
2 it \sm9l 

Vco 

t€f 

-1 

— 1 Lvsl l e * \ (emira i d 1 ^ ~ 
•q . 0 1 slrvkpvj £ 

For k T>> X* 5 = hi , 
b 

r oCT) = JL 3
X (JV[/ J U [ J f ] 

1 v (5.39) 

and for kgT « "C -1 5 --4/m 

r0 u ) = j l 31 u m 
a, eF 

(5.40) 

where 
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9 1 3 z*o [ vsz 7 ys) <b--tt)] # (5.41) 

The T2 In ( £/k_T) temperature dependence of eq. (5.39) 
has been found previously by Guiliani and Quinn (1982) in a 
corresponding calculation for pure metals (first order in the 
screened Coulomb interaction). These authors, however, 
neglect the 8-IT singularity and obtain instead of eq. (5.41) 

z. 

9 oc n0 VSj(&so) . In a calculation of P done with the 
Boltzmann electron-electron collision integral also in pure 
metals (unpublished) we found = W [ (e=o)* V^ le^to] 
The calculation presented here appears to be correct but the 
treatment of the logarithmic singularity is possibly over-
simplified . 

5.3 Contribution of the Particle-Hole Diffusion Pole to the 
Quasiparticle Lifetime 
In the diagram of Fig. 5.1 we have to calculate an average 

of a product of two Green's functions. In the previous section 
we replaced that average by a product of the averaged Green's 
functions and obtained (eqs. (5.23) , (5.24)) 

A 
PCT) = i f £3 . cU L wc^+fc^] <TcCj,ip - A c ^ ) (5.42) 

2 ; fa* J 
- 00 

with 

= -4- P<*,t>> P C5M.il) (5.43) 1 o lo 

This function which arises from the product of the 
averaged Green's functions tends to a constant as . 
The Coulomb spectral function <7"c is linear in *] for 
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low rj and therefore ^(T) varies as T2 at low temperatures. 
But in Chapter 4 we saw that the two particle Green's function 
is singular at low frequency for certain values of the external 
momenta. We must then consider the effect of the particle-hole 
and particle-particle diffusion propagators (eqs. (4.8), (4.10)) 
in l €m ) (Fig. 5.2). 

The Coulomb spectral function is large for small 
momentum q (see eq. E.19) and the diagram of Fig. 5.2(a), with 
the particle-hole propagator, gives the dominant contribution. 
In the diagram of Fig. 5.2(b) the momentum transferred by the 
interaction is of order 2k^ when the particle-particle 
propagator is large. 

For the term of Fig. 5.2(a) we have 

oiiUrt.Un) . - , ( A I I Vc 
Ql'Iod (i'd* , t w 1 p ^ 

X \ ( q ; ie^f , icy*) . (5.44) 

When ^^ ( e , o r qt >> 1 we have (see Appendix 
C) , 1 Cc^) lê i + f^ 2 uX/iiJ(l ^o c*^, »€mi«o^ G(B,C6)h)«i. 
It follows, then, from eq. (4.7) that Dq becomes equal to the 
first term in the ladder series of Fig. 4.3, i.e. 
3>0 ?(ztt%-c) s U . The term of eq. (5.44) then becomes 
smaller than the one calculated in the previous section by 
the factor ICq ; Htô  J I£m) << 1 . So, as before in the 
calculation of corrections to the Boltzmann result for the 
conductivity (see Chapter 4), we consider in eq. (5.44) only 
the terms in which the diffusion poles occur, i.e. terms with 

U w + ^ d <3j£<1 (eq. (4.8)). For oCW (i^', tft-m) 
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feuv 

2: , 

(a) (b) 

FIG 5.2 

Contribution of particle-hole (a) and particle-particle (b) 
diffusion propagators to * C i fetn', £m) 
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we have , so we consider only terms with 

aft 
* = - ' a 1 z l v ^ i * ) uw^.-.e.) 

(u 

a. 
x G 0 C ; le*'*^) # 

The most singular term is obtained by expanding the 
Green's functions in powers of g and wi . Recalling that, 
in the end, the frequencies are continued to the 
same real value we may write 

ka f A OA 
tlA Z L V Cj, iw ) 4'fctffiu a * ) 

a r l2* 
l i g e u . i ' o go c j 
(ztty1 

2. ha 
3 - ^ i . - r . i V C , , ^ ) ^ C ^ ^ / ^ ) ( 5 . 4 6 ) 

The integrals I are defined and calculated in Appendix D. 
This gives, after doing the frequency summations, 

r A 9 Q ^ ^ 

^ ( u t , - , ^ ) » ( n r ^ il, f gjcvi) ^ h i v ' w e * . ) 
Jizvy^J ir 

which, after the analytic continuations E + i o f , i£m-» E-c'ci*' 

is 
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ia r tr 

- cd 
4 co 

(5.48) 
1 w rt . r fl ZA 

13 dm w ) 
c2'N)D' J 

flft We can calculate <* (it*,', ifi*) in a similar fashion, 

j (itr)̂  p u >-€w * * • c 

which gives 

o<or(e,£) =-2iicncx1' li 
can* 

• » 

d1 V Cq.q) Etq,eJ (5.50) 

Therefore the quasiparticle inverse lifetime is, 

P (E,t) = NOR1 

C2T1)A J 

f 00 
fcA 

d") [nlq)>fcr6)] ̂ cq.q) r* ̂ c^.ct^e) 

i- f ̂  f d-) [ Ni«])t ftrjte)] 0-cCq.q) IU 1 (5.51) 
4-a> 

t • c 

This is exactly the result of AALR (c.f. eqS. (4.31), (4.33) 
with W-- E ) . In 3D an explicit evaluation recovers the result 
of Schmid (1974). From eq. (E.19), 

= *** ^ 
"|lt 6 

where £ = 3>lC»eP and t the inverse screening radius is 
[C1 = 8TTn0e,1 = leF/ir . Hence, for x'1 « £ 
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ret) - f i 
4 1 

n f 
o siwkpq £ y U ^ D 1 

The upper limit of the q integral can be put equal to + ® 
because the integral is dominated by J ^ T for 

<i "C-1 . We obtain , 

r v o2 rc r ) . J l l 

where 

<x UfeT) (5.52) 

3 l/I f* ** 
(X = dx-

I SlV»k * o 

This is the result obtained by Schmid. 
In 2D we have (eq. (E.19)) 

<r<Co y * Aire _L!E . zj> (5.53) 
e 

where K- is the inverse screening radius in 2D l̂- - iwe 
and £ - D again. For kgT << X -1 

CO 

-1 
,1 

P ( T ) = l £ l <U J L - dq * J L - ^ 
it € q !— \dq _ 1 - 1 (5.54) 

sinupt] j f + t><f v i ^ f ) 2 -

If we make a change of variable ol= in the q integral 
we find that, at low q , it varies as Vlql . The vj integral 
then diverges near q r 0 . This is the divergence we mentioned 
in Chapter 4 (eq. (4.34)). We now show that this divergence is 
cured by renormalizing the electron propagator which appears in 
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the interaction self-energy. As we saw in section 5.1, we 
must then use the definition of cdie^, u ^ ) given in 
eq. (5.15). This function is still given by the average of 
the diagram of Fig. 5.1 except that now the upper Green's 
function is the fully renormalized GC , ; C£m' + 

and the lower one is G( j & I ,€v»* ) • defined in 
eq. (5.17). After averaging over impurity configurations 
we again generate a clean limit contribution, in which the 
average of the product of the Green's functions is replaced 
by the product of their averages, and a correction to that 
term involving the particle-hole diffusion propagator D (Fig. 
5.2(a-)). Both the averaged Green's function and the particle-
hole propagator are modified by the interactions. The Green's 
functions are well behaved at low frequencies and, at low 
temperatures, elastic scattering dominates the lifetime of a 
momentum state. We may then assume that the averaged Green's 
functions may be replaced by their noninteracting value 

• Th e only change in the calculation lies, then, 
in the renormalization of the particle-hole propagator, D. 

As it was defined in Chapter 4 (Fig. 4.3), the unrenormalized 
particle-hole propagator Dq was a true two particle Green's 
function for the noninteracting system. As is shown in Appendix 
E, its diffusive pole gives for the density-density correlation 
function the diffusive, low momentum and low frequency, behaviour 
that one expects from macroscopic hydrodynamic arguments 
(Forster 1975). The renormalized version of this propagator 
with which we now deal, D, is no longer a true two particle 
Green's function for the interacting system. It is generated 
from an average of + i€y*'t tŵ  ) and GC^', a; i£<m) 
and therefore has no interaction lines going between the upper 
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and lower Green's function. We shall soon find that the 
diffusive singularity in D will be cut off by a finite 
lifetime. The true interacting two particle Green's 
function, however, still shows a diffusive singularity as 
one expects from the macroscopic hydrodynamic arguments. 

The propagator D, to which we shall refer simply as 
the renormalized particle-hole propagator, bearing in mind, 
however, the comments made above, obeys the equation 
represented in Fig. 5.3, where Dq is the unrenormalized pro-
pagator defined in Chapter 4, and the block T contains the 
interactions. From the comments made above it follows that 
the interaction vertex T does not contain Coulomb lines going 
between the upper and lower Green's functions. By including 
the integration over external momenta in the definition of T 
the equation of Fig. 5.3 becomes an algebraic one, 

0kv/ - 3>flc q; ie^) 

+ DoC^tfc^ttn.) TCqi ( 5' 5 5 

_ 1 

We are interested in the singular term which occurs for 
<0 , 

^>cV'i6"»''t6i») r F J (5.56) 
tfirvl1 \_l-q.>l * i ] 

where Sl^ = and 

1 s _ — - — (5.57) 
tlcife*.', it*) ZTMoZ^ 



> 

-m. 11' 

Dt 

> 

T 

^ Y 

> 

D 

FIG 5.3 

Equation for the renormalized particle-hole propagator D. 
The block T contains the interactions. 
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We have taken the limit q 0 in T because we only need 
the leading q, term in the denominator of D. We shall 
eventually make the analytic continuations q ± C-O* 
and jL£m-»E.+<Lov and we may again put <| = 0 in 

J a
 1 . 3 T l^.o j £tio+ ,6-10*} (5.58) 

r(e,t) rir(6,e) innox1-n> D 

RA AR 
(We shall see that X-. is real; so x = X ) • 

In the next section we shall calculate x D the lifetime 
of the D propagator. For the moment let us return to the 
quasiparticle lifetime. 

G-reero s 
As we have said, renormalizing theAfunction in the self-

energy and using the exact definition of quasiparticle lifetime 
of eq. (5.7) instead of the lowest order expression of eq. (5.1) 
amounts to replacing, in eq. (5.51), the bare particle-hole 
propagator Dq given in eq. (4.8) by its renormalized version D 
given in eq. (5.56). Instead of eq. (5.51), then, we have, 

r u j ) = 2tt Q*)* ) 

* °"c ** (5.59) 
^ + c V + | 

- 1 which in 2D for E << k_T << X is 
B 

p ( t ; = z z 2 l c 

TT € 

oo 
doj _ j 1 

5 ink^ 
/ 00 

us 1 ^^ (5.60) 1 fc^1- 4</r 

where we used the result of eq. (5.53) for the spectral function 
of the Coulomb interaction in the diffusive limit. 

Defining a new variable of integration v 5 Dq2 we can 
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do the q integral exactly, 

PCT) = ( c^ . 1k A In. ( 5 - 6 1 ) 
IT e J ŝ Upq t V ± - T* rji 

For r| « *c w e h a v e and we can drop J 1^ 
in the denominator of this equation. The integral is 
divergent when V"^ o . The divergent term is,for ""C-pk̂ T >> 1 

rc-o - J U L v e r / ] ze 

= III (5.62) 

In the next section we shall see that is given by 
(eq. (5.89)) 

JL - *sJ Ah. Il (5.63) 
S " T 

Therefore to leading order in temperature 

. « ^ L U I? (5.64) 
' -qtt) t 

with This expression is valid for tempera-
* . 

tures greater than T qq C J . 
We recall that the result obtained by AALR (eq. (4.36)) differs 

from this one both in the prefactor (they have an extra factor of 
2) and in the temperature which, in their case, is 

CKft y e 

In the following we discuss the evaluation of X and prove 
eq. (5.63). 
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5.4 The Lifetime of the Particle-hole Propagator D 
The evaluation of the lifetime of the particle-hole 

propagator D, given in eq. (5.5 7) in terms of the interaction 

in the previous section. The underlying principles, though, 
are the same, as we shall soon see. And in the end J? and 
1/"Cn turn out to be equal. We shall restrict ourselves to 

Coulomb interaction. The simplest diagram for T is given 
in Fig. 5.4. It differs from the diagram which gives the 
clean limit contribution to P in that it has two extra 
Green's functions at the ends of the self-energy insertion. 
There is a corresponding diagram with the interaction line 
on the lower Green's function which must be treated according 
to the prescription of section 5.1. Note that the singular 
behaviour in the propagator i ) only occurs 

for Ĉ i <o (eq. (5.56)). We shall calculate for 
€yt»'>°, €m<0 - In the other case of interest, t̂*»'<0 , 
we would get the same result. The contribution of the diagram 
of Fig. (5.4) and its counterpart with the interaction line 
in the lower Green's function is * 

vertex , is considerably more complicated than that of T 

D w 

the diagrams which are of first order in the screened 

( £!» G \ ft. I [ l \ s . o e O ' Z W c O ] } 
J UTir ° o i 1 ' 

(5.65) 

where 

r J 
i l J- l V Cq, cui ) G0(ft+q . t e w * i w ) (5.66) 

a ft can)1 p u, 
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- y — 
It, 

FIG 5.4 

Clean limit contribution to 1/X 



The term in the second line of (5.6 5) corresponds to the diagram 
with the interaction line in the lower Green's functions. So, 
following the prescription of section 5.1, we have replaced 
the self-energy (which would be Z^C?.*6**) because < 0 

by M/z) E * U m ) ] . 

After the analytic continuations td^ EfiO+ and 
E-tO* (see eq. 5.58) we get from eq. (5.65) 

_ _ j _ 
"C® ztrn0r1' czir)dl 

^ g m ^ m . o f l l ^ ^ e ) # (5.67 

a 
The imaginary part of £ (k, E) was calculated in 

section (5.2) (eq. 5.24). It was shown that it ts 
a weakly varying function of Co (on a scale of order € ) . 

r r 
The real part, ZL^(k, E) is related to the imaginary part, 
ZL^fk, E) by a Kramers-Kronig relation, therefore the same 

applies to it. Hence we can put k = k_ in the self-energy 
functions in eq. (5.67) to get 

_ l = z.*(*,.e) - j t i - i c z w l ' z w ) ] 

: . 1 1 l R u f , £ ) - z / k . e ) ] r 1sc*,.«> 

r (£,T) . (5.68) 

Thus is just the quasiparticle lifetime in the clean 
limit. 

We shall consider the effect of the diffusion poles in 
the evaluation of X^. We shall soon see that is going 
to depend itself on the renormalized particle-hole propagator 
defined in eq. (5.56) and this will eventually lead to a self-



96. 

consistent equation for x . Unfortunately the calculation is 
considerably complicated. The leading 1/kp^ contributions to 
the interaction vertex T are shown in Fig. 5.5. Again, 
there is a similar set of diagrams with interaction lines in 
the lower Green's function which have to be treated according 
to the prescription of section 5.1. 

Strictly speaking, the particle-hole propagators appearing 
in Figs. 5.5(a) - (c) are different from the one in Fig. 5.5(d). 
The particle-hole propagator appearing in Fig. 5.5(d) is the 
renormalized D propagator defined in the previous section (eq. 
5.56).because it originates from the average of a product of 
the renormalized Green's function G and G. The particle-hole 
propagators in Figs. 5.5(a) - (c) originate from the average 
of a product of two G's. For the moment, though, we shall 
replace them by the unrenormalized Dq propagator defined in 
Chapter 4. Later we shall see that the only term in which we 
need to renormalize the D q propagator is that of Fig. 5.5(d) 

The appearance of the diagrams of Figs. 5.5(a) and "(d) 
is easy enough to understand. They represent the possible ways 
of inserting the particle-hole propagator in Fig. 5.4. In the 
diagram of Fig. 5.5(a) the diffusive poles occur when 

(remember ) and ,u)̂ x «1 Hence 
the Green's function inside the self-energy insertion is 
essentially G A (£ ,16^') which is of order "X for 
liô i , Iĉ j J << X . The diagram of Fig. 5.5(b) gives a 
contribution similar to that of Fig. 5.5(a) except that 
G A(E , is replaced by 
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< 

(Q) (b) 

trv 

(c) (d) 

FIG 5.5 

Contributions to the inverse lifetime of the renormalized D 
propagator. 
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which is also of order X . The contribution of the diagram 
of Fig. 5.5(c) can be shown to be of the same order as the 
previous two in a similar way. 

It is not easy to prove that all diagrams, other than 
these four, give smaller contributions. But the reader can 
easily convince himself that this is so if he keeps in mind 
the region of momentum and frequency in which the singular 
diffusive poles appear and the results of Appendix C for the 
integral I ( V, . K ) , As an example consider inserting an 
impurity line in one of the interaction vertices in Fig. 5.5(d). 
This diagram is large for , hence 

and such an insertion reduces the contribution of the diagram 
by a factor I ( ̂  ; tê i+fû  , t€W) ^ I k f l . 

The reader is warned that the following pages are a bit 
heavy with calculations and is well advised to skip a few pages 
(to eq. (5.87)) if he/she feels that his/her patience is 
dwindling! 

We consider first the diagrams of Figs. 5.5(a) - (c). 
We denote their contribution by S 

u <V— C / 

5, 
Z Tin0 

i l l - v ccq,u,][r"' 

t u l c* .te^yf ^ c m t ^ e e l c * ' ^ ) ] 1 

+ 

(5.69) 
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where r iê u'ii)̂  , is defined by 

rr^; I'ê iu , te f A G0(**q ,ieMr£u )G(|,££,„) 
j cot)* 

* iem» ̂  , tew,) (5.70) 

which for ( e-m-no ) < o and <jClui,c«± <w 

^ 2 < 5 - 7 1 > 

As usual we expand the Green's functions inside the curly 
brackets of eq. (5.69) in powers of q and to . We can also put 

r inside the curly brackets because we shall later con-
tinue an<^ to the same real value. For the first 
line of eq. (5.69) we get 

J 

j e w ) * • 

<r x * - iw i „ + 
a. 1 

where we used 

fcHix oi^Q r _L (5.72) 
j d 

Proceeding similarly for the other terms inside the curly 
brackets and using the results of Appendix D for the integrals 
I one finds that the leading q, tô  term cancels and, 
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5 . 7 3 ) 

Therefore the leading contribution from the diagrams of 
Figs. 5.5(a) - (c) is 

a - c 
A 5s f\ ft ^ ' + u u>- , v. t yyf ) 

jutt) f> w 

This gives, after doing the frequency sums and performing the 
analytic continuations i €̂ 1 £ t i £ 

a- c - <, n0 x 
« 

f A. q f 1 0 v / ^ ** 

The contribution of the corresponding diagrams with self' 
energy insertions in the lower Green1s functions can be 
calculated in a similar way. Denoting it by S^^c' 

,art w • . 2 

f £ 5 G ^ C b ^ O L G ( B . i f c J J G c . 
i jcato* 

jc^l a 

j g ' c m e w ) g^cs.ie*) g v ^ ^ h ^ ) ] ^ 

( 5 . 7 6 ) 
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Note now that the frequency of the self-energy insertion 
is treated as different from the frequency of the Green's 

function, . According to the prescription of section 5.1 
we must calculate half the sum of two terms, one with €*« > o 

the other with \r> < o , even though €m is always less than 
zero. But the term in curly brackets is the same in both cases 
and we calculate it in the same way as in to get 

S , , - 2T,n0xl 
ol - c 

n 
For €" < o this gives 

r \0 aft 

.c-) > 
a'-c m 0 t J ^ f ^ f c V e ) V ^ , ! , ) (5.78) 

and for > o 
co 

- Ho Z' 

t i aox. 

f j o r an 
j l n n , wupoic^lj) c^i 

-co 

A 
(2ir)d , 

R lift 
f c v o vc (5.79) 

The total contribution of these diagrams is, then, 

| [ 4 sa'-v j 
l-o 

a- c 

- ]jel \ u l ^o cq.etij.e; 
; j 

f j r a RH 

O \ aq ficntot^hy] ^o (s.so) 
cjtt)a j«, 

The calculation of the contribution of the diagrams of Fig. 
5.5(d) and its counterpart presents no novel features, 

ftft 

•in f ti'o 
j 4 2! vecq,4w ) i>0 miô  4 iem) 

(5.81) 
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i L v c c q , ) ^ c ^ ; i ^ + i * ) 

which give 

- i n f i j ( "dh v * ^ ) «e) 

Tip tx [ A ( JU WCq) 3>A*Cv ,e) 
-00 

+ 00 

(5.82) 

(5.83) 

(5.84) 

Adding eqs. (5.75), (5.80), (5.83), (5.84) we get an interesting 
result, 

f d ' c 
+«* 

_ j ftrt 

j(ar )d , 

-co 

>ffl 

- oo 

A ft 

+ rvc7 
2 (in)4* J 1 

x jX ^n.fc) - \ E+n.eil 

r ftA Aft 

U ^ O e^e} + Do C<j.e*n , e;] . (5.85) 
aft _ ar 

Using the fact that 3 , e' ) = [2> ; * , e ) J 
and ^ 2 I ^ V ^ f i ^ ) these terms can be combined to give 
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not lo-c* ( f I miqh^cqte)] ct^ca,^) ; e+n ,e) 
} (2n)a l 

c 

or, finally, 

f A f R** 
/ C2tt) - ao (5.87) 

which has exactly the same right hand side as eq. (5.51) for 
the quasiparticle inverse lifetime 1 However, we can now cure 
the divergence by replacing D q in this equation by the 
renormalized propagator D given in eq. (5.56) , thus obtaining 
a self-consistent equation for "C 

The reader may worry at this point about the fact that 
the diffusion propagators which appear in the other terms 
should be similarly renormalized and then their contribution 
would not cancel out. The important point is, however, that 
whereas the term in eq. (5.87) diverges as the inverse lifetime 
of the diffusion propagator goes to zero, the sum of all the 
other terms vanishes. Therefore the term of eq. (5.8 7) is 
the dominant one. 

So, finally, replacing Dq in eq. (5.87) by the renormalized 
particle-hole propagator D defined in eq. (5.56) , we obtain 
(E << k„T) 

(5.88) 

We already calculated the right hand side of this equation in 
2D (eq. (5.59) and obtained 

± t. 
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-1 r U t V ^ , ' ] (5.89) 
s 2 m 

which to leading order in temperature is 

1 = ^ l i ( 5 . 9 0 ) 

where again k T0 
= K M ) 1 6 This is the result we quoted 

B Z 

in section 5.3 (eq. (5.63)). 
It is in a sense surprising that we end up with the same 

expression for 1 / "C D that we had for T , the quasiparticle 
inverse lifetime, if we consider the complexity of the calculation 
of x D compared to that of P . The important point is, however, 
that the dominant term in 1/ "C is that arising from the diagram 
of Fig. 5.5(d) which is remarkably similar to the diagram which 
gives the dominant contribution to P (Fig. 5.2(a)). 

We have mentioned in Chapter 4 that the cutoff of weak 
localization, the quantity which is obtained experimentally in 
magnetoresistance measurements, is, strictly speaking, the life-
time of the particle-particle diffusion propagator (eq. (4.37)), 
X^ . This quantity was calculated by Fukuyama and Abrahams 
(1983), who obtained 

_1 . jU ll (5.91) 
T 

I with k^T^ = (fepli) € It is enlightening to compare our 
calculations with theirs. 

The particle-particle diffusion propagator obeys an 
equation similar to that of Fig. 5.4. This propagator, which 
enters in the calculation of the conductivity (see Chapter 4) 
is a true two particle interacting Green's function. So, in 
principle, the corresponding interaction vertex T' , would 
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have diagrams with interaction lines going between the upper 
and lower Green's functions, in addition to those with self-
energy insertions in either of the Green's functions (see 
Fig. 5.6). In these latter diagrams there is no frequency 
transferred between the upper and lower Green1s functions, hence 
the two particle-particle propagators on either side of 
have the same frequency difference ZL^ - ̂ vw'^mv . In the 
diagrams with interaction lines going between the two Green's 
functions, the frequency difference of these two particle-
particle propagators is no longer the same, it differs by zu 
where .ô  is the frequency transferred by the interaction 
line. If we recall that the particle-particle propagators 
(eq. 4.10) are singular when il. o we see that these latter 
terms are less singular than the ones with self-energy insertion 
on either Green's function, provided the interaction itself is 
not singular as tô  o 

The result is that the equation for the renormalized 
particle-particle propagator reduces to an algebraic equation 
as the one we had for the D propagator (eq. 5.55)) with the 
solution 

c c^i u m . ,iew)r * 
c0cq; t'cv, i£m*,i€m) 

- : (5.92: 
2u ho r a [ u x u l 1 

Moc 
where 

=
 1 t'(q»o ; "lev, 

T, zirru-c1 
(5.93) 

zirno-c7 

The interaction vertex T ' is given by a set of diagrams 
similar to those of T , the interaction vertex of the particle-



'(a) (b) 

FIG 5.6 

Contributions to the interaction vertex of the 
particle-particle propagator before averaging 
over impurities. 
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hole propagator D. The diagrams in rP , however, have the 
upper and lower electron lines running in the same direction 
and £ is their momentum sum (Fig. 5.6; see also the definition 
of the particle-particle propagator in Chapter 4, Fig. 4.4). 
For this reason the diagram corresponding to the one of Fig. 
5.5(d) has a particle-particle propagator instead of a particle-
hole one. 

Also, in 4 the diagrams with self-energy insertions in 
the lower Green's functions are treated in the standard way 
without the prescription we had to use in calculating T . The 
dominant contribution to comes again from the diagram 
similar to that of Fig. 5.5(d). However, its counterpart, with 
the self-energy in the lower Green's function, gives now an 
identical contribution. Therefore the self-consistent equation 
for is 

JL - J£I JU [k5T6 Zl ] (5.94) 

which has the solution of eq. (5.91). The extra factor of two 
that appears in this equation as compared to that of (eq. 5.89) 
for 1/"C D is due to the contribution of the diagram with a self-
energy insertion in the lower Green's function. 

In conclusion the dominant contribution to comes 
then from a diagram similar to that of Fig. 5.5(d) and its 
counterpart with self-energy insertions in the lower Green's 
functions. The dominant contribution tb P, the quasiparticle 
lifetime, comes from the diagram of Fig. 5.2(a) , which virtually 
is identical to that of Fig. 5.5(d). This explains, then, why 
1 /"C^ is essentially 2 P apart from the difference in tempera-
tures T^ and (which is due to the same factor 2). 

This simple relation between 1 / and P is, in the 
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end, due to the fact that diagrams of the type of Fig. 5.6(c) 
can be neglected in the calculation of 1/ X ^ . if the inter-
action is singular at cô  o these diagrams are important 
and this relation between 1 / "U, and ? may not apply. 

voc 

5.5 Experimental Results 
There is now a variety of experimental determinations of 

X obtained from magnetoresistance measurements, both in 
silicon inversion layers and in thin metallic films. 

In silicon inversion layers the results indicate that the 
dominant scattering mechanism is electron-electron in nature. 
One^observes for 1 / X t h e T2 term characteristic of clean 
metals (Kawaguchi and Kawaji, 198 ) and at lower temperatures, 
typically a few kelvin, the linear T dependence induced by 
disorder. (Wheeler 1981, Uren, Davies, Kaveh and Pepper 1981, 
Bishop, Tsui and Dynes 1982, Davies and Pepper 1983). The 
variation of the prefactor of the linear term with disorder 
is consistent with a 1 /k̂ -t behaviour. The existence of the 
extra logarithmic factor In (T^/T) is still controversial, 
though. Because T^ is much larger than T in the range of 
temperatures in which these experiments are conducted, the 
variation of the logarithmic factor is quite negligible. How-
ever, it does appear as an enhancement of the prefactor of the 
linear term which will then be (T 1 °K) 

ft-. *B kTj . T ,n 6k 
m 

Bishop, Tsui and Dynes (1982) claim to obtain a large 
enough scattering rate 1/t^ to be consistent with this 
enhancement. However, Davies and Pepper (1983) and Poole, 
Pepper and Hughes (1982) point out that even for T ~ 1°K the 
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T2 term is still important and any attempt to fit 1 / Z t o 
a simple linear variation in temperature leads to erroneous 

2 

.results. They fit 1/X to a law A^T + A2T and obtain for 
the coefficient A^ 

q - ~ k<5 
H , - a 1 M 

where'a* is a constant of order unity. They also find that A2 

varies as 1/E„ as the theory predicts (eq. 5.40). 
r 

In thin films the results are, if anything, less clear. 
In Mg films Bergmann (198 2) finds only a T2 temperature 
dependence with a coefficient which is independent of disorder. 

1 6 5 
In noble metal films (Au, Ag, Cu) he obtains a T * law again 
with a coefficient which is only weakly dependent on the mean 
free path. These results seem to indicate that the clean limit 
contribution is dominating the scattering rate in the Mg 
measurement and is still present, together with the linear term, 
in the noble metal measurements. However, Bergmann claims that 
an estimate of the clean limit contribution to gives a result 
three orders of magnitude smaller than the observed values. 

In conclusion, although the experiments in silicon 
inversion layers have established clearly the existence of a 
disorder induced linear T term in the electron-electron 
scattering rate, the existence of the extra logarithmic factor, 
first predicted by Abrahams, Anderson, Lee and Ramakrishnan 
(1981), is in doubt. In the following chapter we present a 
similar calculation of the quasiparticle lifetime due to phonon 
mediated interactions and show that this extra logarithmic term 
does not occur. This indicates that the form of the dynamically 
screened Coulomb interaction in the diffusive limit (eq. E.19) 
is an essential ingredient of the calculation. It could then 
be possible that averaging ab initio the Coulomb interaction 
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is not a valid approximation and in a better calculation this 
logarithmic term might disappear. This is a question for 
future investigation. 

V 
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CHAPTER 6 

PHONON MEDIATED INTERACTIONS IN DISORDERED METALS. A MODEL 

6.1 Introduction 
In this chapter we address ourselves to the question of 

electron-phonon scattering rates in disordered systems. 
In view of the previous results for electron-electron 

interactions one may expect that electron-phonon scattering 
rates will also be affected by the presence of elastic 
impurity scattering. 

This problem has been considered by several authors 
(Schmid 1973, Takayama 1973, Keck and Schmid 1976, Al'tschuler 
1978) using different model Hamiltonians. All these 
calculations, however, have neglected phonon renormalization 
effects. 

The results obtained in Chapter 2 indicate that, by 
suitably renormalizing the phonons we should obtain, in the 
low temperature regime, inelastic scattering rates with 
temperature dependences similar to those found in Chapter 5 for 
electron-electron interactions. 

We shall consider only a very simple model in which the 
electron-phonon interaction is taken to be the same as in the 

ii 
ordered metal and given, as in Chapter 2, by a Frolich type 
Hamiltonian 

CALCULATION 

( 6 . 1 ) 

with 

z n 0 

( 6 . 2 ) 
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where "Xo is a dimensionless coupling constant which is typically 
of order one. Impurities are assumed to couple only to electrons 
in the way described in Chapter 4. 

This Hamiltonian was the one used by A11tschuler, who 
obtained for the inelastic scattering rate in 3D, 

— - w i zl t « t l 

3 1 

v j , c l / t « t « t (6.3) q fc H 

k, j l t * t « 9. 

with k BT 2 = 3(cs/vpf/x and k ^ = C 5N pT . We shall see 
3 /2 

that for T << T 2 we obtain a T dependence if phonon 
renormalization is taken into account. In 2D we obtain a linear 
temperature dependence without the extra logarithmic factor which 
occurs for dynamically screened Coulomb interactions (see 
Chapter 5). 

It should be stressed, at this point, that the Hamiltonian 
of eq. (6.1) involves a number of important simplifications. When 
a phonon is present in the system the impurity atoms move, and 
this gives rise to additional impurity dynamical scattering. 
Schmid (1 973) and Keck and Schmid (1 976) calculated 1/"Cin using 
a model Hamiltonian, originally due to Tsuneto (1960) , which 

4 
includes these effects. They found a T dependence for T < T^ 
and T2 and T3 terms above (the first one being due to transverse 
phonons). An additional difficulty for low dimensional electron 
systems is that the phonon dimensionality can be different from 
the electronic one, in general higher. This is the case, for 
instance of silicon inversion layers (Ando, Fowler and Stern 
1982) . 
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Our results should then be regarded as a preliminary 
indication of the need to take phonon mediated interactions 
into account when discussing the magnitude of electron-electron 
scattering rates in disordered systems. But any comparisons 
with experiment would be, at this point, out of place. 

The expressions for the quasiparticle lifetime derived in 
the previous chapter remain valid provided we make the 
replacement 

CTcCq,iq) —» In* ll (6.4) 

where ^"(q,^) is the phonon spectral function which will be 
discussed in detail in section 2. 

6.2 The Phonon Spectral Function 
The averaged renormalized phonon propagator obeys a Dyson 

equation similar to that of the screened Coulomb interaction 
VC C q , ^ ) . We have 

r ( 6 - 5 ) 

where the bare propagator Dq and the self-energy 
are 

a. .. <5-6> 
tu' + v> 

S C q , C ^ ) ^ THq,^) (6.7) 

For ql >> 1 the impurity vertex corrections may be 
ignored in TTCq,iu)2) and TTcq. , itd̂ ) 2 "TTĈ .,Cu)̂ ) ( eq. (E.20)J 
where TT C q , ^ ^ ) the bare polarization bubble. For 
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frequencies i] £ ^ ^fT w e c a n u s e cl e a n limit result 
for (eqs. (E.24)) and replace X ^ V T ) by its 
zero frequency value. The spectral function defined 
by eq. (A.12) then has exactly the same form as in the pure 
case (see Appendix A). 

For « 1 we have ^ << kgT1 << X where kgT1 = 
-a 

We shall see that the important values of i) are ^ £, 
We are then in the diffusive limit for TTC^.tu^) and we have 
(eqs. (E . 16)) 

_ , . - m o frf)1 
V ^ l ) = i r-k tit (6.8a) 

6 .8b) 

o a We consider separately the limits v >> k DT 0 and \>Q << k_T0 s b z a z 
with k BT 2 = C * / * = dL(<i/vF)2/x 
i) v- » k tT z 

Note that v,P/kgTt and hence 
= , S o f o r 

X, L%,y\) s -in0 (6 .9a) 

The spectral function becomes, using eq. (6.2) 

8 z d ? 

[ x - j 2" + L ^ x u * (6.10) 
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The renormalized phonon energy and inverse lifetime are given 
by (c.f. eq. (A.13)) 

+ K = v^ll-ZA.) (6.11a) 

\ ' V (6.11b) 

We see, then, that the phonon modes are well defined and 
we can rewrite eq. (6.10) as 

Q" Ĉ , T)) -- f _U!3: _ 1 ; v{ (6.12) 

which, again, is a form identical to that of the pure case -
(Eq. A.14). 
ii) ^ « k B T 2 

In this case the full frequency dependence of the self-
energy (eqs. (6.8)) cannot be ignored. It is useful to define 
the variable 3x̂ /11]I . We have , 

V ^ ' 7 ] ) ^ -̂rzr- (6.13a) 
1 t 1 + oh 

* 

\)2 

= ŝ at] (6.13b) 

and for the spectral function, noting that ^ " ^ , 

„ ( 6 . 1 4 , 

( w ) [(ii - u ' ) ^ [ 2 ^ 1 
Using 

. . 4/2 
|flq | » - is. { R Tz ini) u (6.15) 

1 Z n0 * ' & 4 1 ' 
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we get 

cito") 

[(qi - u o t n * ) * 
( 6 . 1 6 ) 

We shall see later that for T << T 2 the values of £ that 
i 

dominate the scattering are q ~ (k_T/D)2, i.e. o ~1 and we 
can set ^f/^X^ = 0 in this expression. 

6.3 Clean Limit Contribution 
The clean limit contribution for the quasiparticle inverse 

lifetime can be written by analogy with the case of Coulomb 
interactions (eq. (5.28)) as 

ro = L f j ^ l N C ^ + f ^ t E ^ I ^ I l l M ^ l ^ C K ' ^ ^ ) (6.17) 

m rf 

with the restriction 

2 r- f f 

As usual we consider E << k_.T. We saw in the previous 
Jd 

section that for q >> 1, i.e. VQ >> k_T. the phonon spectral 
B I 

function is the same as in pure metals. Therefore, for 
T^ << T << 9 d we get a real phonon scattering terra from the 
modes with £ T and a virtual phonon term from those 
with ^ >> kgT which can be calculated as in Chapter 2. 
The restriction I k'-M/2 »F > Max j , c a n b e waived 
because in either case the integral^dominated by phonon modes 
with energies of the order or larger than k_T i.e. 

/2*p>- ^fet/e^ max 5 kftt 1 i 
* ' w ) * 
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One obtains in 3D , 

t i t ) - «* l A w f + ji! x m j & o 1 t » x, (6.19) 
^ 8 £ p 

where 6 D is defined as 9̂  r 2kFCs and 

^ in.1 ( t ^ ^ l v ^ )'\ 
« m a / . • 

( 6 . 2 0 ) 

s m e/2. 

<* - 2 "it d* 
si fik x. 

( 6 . 2 1 ) 

The virtual phonon term has exactly the same form as that 
of eq. (5.36) with V$$ replaced 2 \ / (see 
Chapter 2). In 2D the real phonon scattering contribution also 
has a T2 dependence and dominates the virtual phonon contribution 
in this temperature range, T >> T^ 

P C T ) = I"1 7>o I VP* T>->T, (6.22) 

For T << T^ only the virtual phonon contribution from the 
phonon modes with ^ > 1 remains. 

We have ignored the clean limit contribution of the modes 
with Cji<i . One can show that their contribution is either 
dominated by the terms we have just calculated (for T >> T^) 
or by the contribution of the diagram Fig. 5.2(a) with the 
particle-hole diffusive pole, to which we now turn. 

6.4 Contribution of Particle-Hole Diffusion Pole 
For temperatures below T. the thermal phonon wavevector is 
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q = < ̂  . W e therefore expect to find an electron-
phonon scattering rate modified by impurities in this temperature 
range. As before, the most important contribution is that of 
the diagram of Fig. 5.2(a). By analogy with the Coulomb inter-
action case (c.f. eq. (5.51)) 

r = rvc* ja^tMc^i-fcvo] f l ^ i 2 ^ ^ ) ^ ( 6- 2 3 ) 

The phonon spectral function limits the range of important 
values of to £ < . Hence for T > T^ the 
contribution of this term becomes temperature independent. 
We shall limit ourselves to the temperature range T << T^. 
We shall have to distinguish the regions T >> T2 and T << T2« 
i) T2 << T << T1 

We saw in section 6.2 that for phonon wavevectors with 
k_T~ << V << k-T.. the phonon modes are well defined, i.e. the B 2 q. B 1 ' 
spectral function has a double Lorentzian form with a small \ 
at the peaks ± V As ^ ^ k^T2 << kgT and ^ « Sof w e can 
perform the nrj integration by replacing the phonon-spectral 
function by the corresponding delta-function (eq. (2.11)) , 

r C T ) = 1 L r 1 * £ 

2. f i T K H V t f C v ^ l t V 1 1 

{2 u . 
* b v y jtf, 

(6.24) 

As in Chapter 2, the factor is absorbed in the electron-
phonon matrix element, so that In 3D we have 
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co 

2TTan0 c} ) 5 

dv . ; 

2> d 
3 tp ( k&t )1 

2 M ^ 
(6.25) 

This is the result obtained by Al'tschuler (1978) (eq. (6.3)). 
In 2D, 

. oo 

rex) . S . ^ t v O j d ^ 

which gives for T >> T2 

fCT) = i h V I j V < T « T » (6.26) 

iw i d 

ii) T << T2 

For V^ < kgT2 we have ^q1 . We cannot then ignore the 
full frequency dependence of the phonon self-energy as we did 
for T > T^. We saw in section 6.2 that in terms of the variable 
U1 5 3qVl'T]l we had , 

[(111 ) - ulJ(l»«*)t i ^ y 
ksti 

and 

r 
^ A - " ) 
(2tt>d ' 

i u s An 
(6.27) 

where JH, is the full solid angle in d dimensions and 
Ml 

u 3 ( 1/dlTqj-c) » 1 . The equation for f(E,T) become: 
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4 CO 

dlij [ + ̂ cqr e)] 
<1/1-1 

ao 
6.28) 

We consider separately the cases of 3D and 2D. 
i) 3D 

The u integral is dominated by o - X for l̂ l/kjT, <i * 
So we write 

p e n - £ 1 
H * 3> dL/X 

t® 
f Ml 
I s3nY) H MC-»|>+ 2 (6.29) 

with 

co 
1° 

os 

d u (6.30) 

Using yi0 r <m kF / 21TX and D r 

i __ 
r ct) - * ^ o b o 

Mi 
(6.31) 

with 

<X = 6 
^ o7 sukLx. 

This result has exactly the same form as the result found 
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by Schmid for Coulomb interaction (see eq. (5.52)). We are 
clearly dealing with the phonon-mediated interaction we discussed 
in Chapter 2. 
ii) 2D 

If we replace the integral in eq. (6.28) by its value at 
^ l / ^ I = 0 we obtain an integral that diverges logarithmically 
near tj o . We found the same problem when dealing with 
Coulomb interaction in Chapter 5. This divergence can be 
cured exactly in the same way. In a self-consistent calculation 
the only change in the expression for the quasiparticle inverse 
lifetime lies in the particle-hole propagator which acquires a 
finite lifetime given exactly by the same equation as the quasi-
particle one. So we write, 

x, 
00 

r ( t ) = z l z 
it1 

dlr| 
si iak^ V 1 

(6.32) 

with 

^ ( — ) vi' 

oo 
clu u*( (ond/x^ho) 

l*K*T 1+ cono/x^ij2 

I J 1 fu 

We can invert the y and irj integration 

r ( t ) , -1 
co 

J 

x Rj 
cc 

(6.33) 

(6.34) 

We now isolate the divergent term in the integral 
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oo 
!U [ cIt] 1 1 • KrT R* f dlx ? 

o 7 ^ ^ ° K ^ 

* — (6.35) 
n ̂  

Therefore P (T) is 

p c t ) = ^ j k v j l l ^ t i j 

^ KjT-UIkjTXj] (6.36) 
it Kl 

with 

xx. 

00 
r v2-dLy Z (6.37) 

We know from Chapter 5 that 1 - an(j therefore to leading 
order in temperature 

r t T ) : • r«\ > 2.3> ( 6 . 3 8 ) 
M l"3 r j 

where 

f l t ^ I, (6.39) 

is taken to be of order one. 
We find then a different temperature dependence from the 

one found for Coulomb interactions. The singularity at low nq 
and low q in the scattering rate leads only to an enhancement 
of the coefficient of the linear temperature term by a factor 
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In kFl. This shows that the T In (T^/T) dependence found in 
Chapter 5 is closely related to the form of the Coulomb inter-
action in the diffusive limit. 

V 
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Appendix A 
The Phonon Self-Energy and Spectral Function in Pure Metals 

A. 1 Self-energy 
The phonon self-energy given by the diagram of Fig. 2.2(b) 

is 

(a. 1) 

where "^C^/iyJ is the simple polarization bubble 

• n - ° c v < 0 = • 

The imaginary part of the corresponding advanced function 
is 

TT'la = ii (A.2) 
* Y J C2.TT) ZlT 

and the real part is given by a Kramers-Kronig relation 

T T - U . 1 ) - (A.3) 
1 * ' J IT <Y| - t j ' 

Changing variables 

t ! 

one obtains 

and for a system with a centre of symmetry 
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T T ; ! ^ ) ' V I ) ( A - 4 A ) 

< c ^ ) = X t V 1 ! ) ( A " 4 b ) 

This is a general property of the phonon self-energy which is 
valid beyond this approximation. In the following we consider 
Tj> 0. 

The thermal occupation factors in eq. (A.2) restrict the 
values of ^ to IfljlVll ^ j R,3T} • I f w e h a v e 

Hax ^ tj> n. <<, v the widths of the electronic spectral 
functions f̂  , (see eq. (2.7)) become vanishingly small 
Using arguments similar to those involved in Chapter 2, one can 
then show that the leading contribution to TT® (t̂.Tj ) comes 
from the region of momentum integration, such that 

l€fc U ^ { i ] , fc3T} (A.5a) 

so that both peaks of the spectral functions occur at the same 
value of , namely ^ C: € ̂  , • As 

this requires also that ^ « ^/Zkp). The integral over | 
is then dominated by the peaks of the spectral functions and, 
because the thermal factors vary on a scale of order 

V } ^ ' p*4<j w s h a v s 
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V ^ 8 ^ [ ^ W t W ] 
_ 

The integral over | can be performed by contour integration, 

uth) 

The angular integration is dominated by the values of + ̂  
such that 

e, r + r «. max( ti. fe.tl 
fcvq h I ^ l «J J J 

(A.6) 

Hence, we can ignore the restriction of eq. (A.5b) and make 
the replacement 

* z u t ' ^ ) . a - s - 1 ) 

to obtain 

* -S"C - ^ ) ( A - 7 ) 

The values of in this integral are restricted by the 
thermal factors and the delta function to the interval 
i€R 1 < flo-* 1̂); S O w e c a n a^-so iG n o r e restriction 
of eq. (A.Sa) and sum freely over momentum. 
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A straightforward calculation gives 

1T° t <,.,,) -irn. i J T<V f 1(4- (A. 8) 

where n and v£ are the unrenormalized density of states at o f J 

fermi level and fermi velocity. 
In general we need values of 4 and for q w 

V ~ tJ and the derivation presented above fails because we 
t ® 
can no longer assume that P f << Î IclxIti, ftaTl . b i • ® j 
In fact Z. ( % , ! ) ) 'v V^ for tj ̂  V^ (see AGD) . Nevertheless, 
the result of eq. (A.8) remains valid as we now show. 

We can rewrite eq. (A.1) as 

x J d u ^ Z ^ p(k,i)j A w V I ) <A-9> 

where = t V2'^) • sP e c t r al functions -

as functions of and + 3 - are also lorentzians, with 
widths ^(k-p;^), -f t ) * t h e s c a l e o f variation 

of tUoj^) or V^ with is of order . If we have 

v^ « vp q ( i - q (^ ftp ) integrals of cĵ  and Gû  are 
dominated by I u | v to \ < V and the limits can 

1 x, » j 1 k.4 1 3> -
be replaced by ± oo . We get, then, to lowest order in / ê . ) 

IT," I ' M ) - - - n . ± 

which for either kgT >> T] or kgT << 1] is 

TTj = TT n 0 2L ; T, < v ) « vq (i- (A.10) 
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The integral in eq. (A.2) is dominated by values of 
(1 - ) . Hence for « vpc| (i- «j/ikT ) we 

can approximate by • ln conclusion, 
for all but the very high momentum phonons q /v 2k^ we have 

1 v
f1 

(A.11a) 

(A.11b) 

A.2 The Spectral Function 
The phonon spectral function is given in terms 

of and S ^ i j ) by 

. 8 v f x u ^ (A.12) 

This function has poles at 2 v^ t c where v̂  and 
are the renormalized energy and inverse lifetime of the q-phonon 
state. As V <t Vp <| we can use eqs. (A.11) for all but the 
very high £ phonons to get, 

v^ 4 r % % = zv- (A.13a) 

(A.13b) 

Using eqs. (A. 11) and (A. 13) we can write £or 

M 
2 (A.14) 
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For most metals the factor h l^V*/ is of order one, •o V ' •% 
hence 

- i « jul* k i v ~ si ~ ^ 
V v o VF 

Si ~ -2- « 1 (A. 15) 

For "»)<< v , CC^.i]) is well represented by the first 
term of its power expansion about TJ = 0 which can be obtained 
by setting "H = 0 in the denominator of the right hand side of 
eq. (A.12) 

6 v j ^ h p ) ( a.16) 

V 
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Appendix B 
Intermediate States and the Imaginary Part of the Self-Energy 

We define as "intermediate state" in a self-energy diagram 
any set of propagators which has the property that, when the 
propagators are cut, the diagram falls into only two parts, 
each linked to one external vertex (Fig. B.1). 

We shall show that the contribution of any diagram to 'the 
imaginary part of the self energy is given by a sum 
of terms corresponding to each of these intermediate states. 
These terms can be identified by a delta function conserving 
energy between the initial state, one electron plus background, 
and the intermediate state. For the state of Fig. B.1 we would 
have 

where the ^ and tj denote the spectral frequencies 
corresponding to each propagator. 

A general diagram will have r propagators and p (p < r) 
independent frequencies to be summed. The remaining r-p are 
determined by frequency conservation at each vertex. Using 
spectral representations for the propagators, the frequency 
sum has the following structure, 

where Cl^ is a linear combination of the external frequency 
and the p independent frequencies , ...} £ , with coefficients 
±1,0. For the purpose of this discussion it is not necessary 
to distinguish between boson and fermion frequencies. 



FIG B.1 

A self-energy diagram with an intermediate state 
with one electron, an electron-hole pair and two 
phonons. 
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All other factors in the self-energy contribution are 
real. 

The sum over can be performed by the usual 
method of contour integration. Each frequency appears in 
several energy denominators. Summing over the first 
frequency £j r we obtain a sum of terms corresponding to each 
of the poles, i.Q.j - \\ , in which appears. Summing over 

the p frequencies, we then obtain a sum of terms with r-p 
energy denominators, each corresponding to p different poles. 
In each of these contributions we can relabel the propagators 
in such a way that the p independent frequencies correspond to 
the p poles which determine that term. In doing the frequency 
summation, then, all we do is replace e £ in the 

' ' r i > • • V f> > 

remaining r-p denominators by the corresponding spectral 
densities ^ . These denominators can only have two 
possible forms 

where .fLj is a linear combination (coefficients ±1,0) of the p 
spectral frequencies and T̂  ^ the spectral frequency of this 
energy denominator. Using the identities 

1 or 

1 1 
iu>, - si n. iu>n - si 'to - SI a 1 

4 1 
sLf-sit s i 5 - . a i 

we can write the self-energy as a sum of terms in which the 
V 



133 . 

external frequency appears only in a single energy denominator 
of the form 

1 

all other factors in the term being real. 
Doing the analytic continuation u-^o* each of these 

contributions to - 2L will have a single delta function 
conserving energy 

-its ( u - o j c v - . w ) 

The important point to stress is that the Matsubara 
frequency of the j1th propagator is determined by the external 
frequency and a number ex (<xs<}>) of the independent frequencies. 
Hence each term in the imaginary part of the self-energy can be 
associated with o< + 1 propagators whose Matsubara frequencies 
are restricted by a single frequency conserving condition 

These CX+ 1 propagators clearly define an intermediate 
state of the type defined in the beginning. 
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Appendix C 

The Integral I ) 

The integral X (3.; ic^* , ie^) / 

( j 4 

iCa; Z ^ \ — , (C.1a) 

.a 
= ax} [ gr(-lt^, ife^ww ) gci.ifi^) 

J utotl (C. 1 b) 

occurs in the calculation of the particle-hole and particle-
particle propagators , ce^-) and iê tiiû  it** ) . 
Also, because impurity lines do not carry frequency, one 
frequently ends up just with an extra factor X C^; + , ) 
or a similar integral. As we shall see, this integral is much 
smaller than unity except when u^) and <1 
We will restrict ourselves to 1 e^ 1̂  I J« €p as that is 
certainly where I is largest. 

For simplicity take / fc^tio^ >0 . The case of 
negative .frequencies is similar. We can write 

i ( a 
I cL n -n.c t- t/iz ^ w v ^ v Wit 

where & XI. is the angular integration in d dimensions 
normalized to unity 

2Z it 
f<£3n(...) = jotj> jde sine ( - ) C.3a' 

a 

= _L f<l»C---) (C. 3b) 
2,7T ^ -71 
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The density of states U((o>l) has the form 

J r 
(c.4) 

where n Q is the density of states at the Fermi level and the 
function f(x) is 

f i 1 + 3 j> 

, X > - 1 

Z 3 (c.5) 

x<-1 

We can analytically continue f(x) to the complex plane as 
f(z) = (1 + z)^ in 3D and f(z) = 1 in 2D if we exclude the 
real axis for Re z < -1. 

Thus we can write 

00 

(C.6) 
-IZ t 

i = &SL , 5 l 
' / * r u/it t e ^ + i u y ^ 

We can perform the (J_ integral by contour integration 
by closing the contour in the lower half plane, thus excluding 
the poles of the Green's functions (Fig. C.1). We get 

-r , f 
I - - n 

Uz(tl£l du^ t ( ) 1 1 (C. 7) 
— jut -t ao _ a - i 

Consider the limit q << We have Jw^l • 

16^1, lû l t ill p. the only remaining energy scale in the 
integral is of order £ . Thus, by dimensional analysis we 

r 
must have 



FIG C.1 

Contour chosen to calculate the (o ̂  integral 
in eq. (C.6). The crosses denote the positions 
of the poles of the Green's functions. Outside 

4/1 
the shaded region f(z) = (1 + z) in 3D and f(z) 
in 2D. 



1 3 7 . 

i ^ - u~ (C.8) 

Having q k^ does not change this estimate. 
b. w t ) <o 

We carry out the same analysis as in the previous case. 
However, when closing the contour in the complex plane, we-
always enclose the pole of one of the Green's functions. The 
integral between -|i ± i© and -u, is still of order 1 /kj,t . But 
we have now another contribution from one of the poles of the 
Green's function. To be explicit, assume and E-^+w^o 
and close the contour in the lower half-plane. 

X 

(C.9) 

where we used for . Using 1/X = zirnoM/' z 

i 
c 

Again, for 3 2 » 1 or (Ĵ  X » 1 we have X « 1 . But 
for a?, (o r « 1 we can expand the denominator of eq. (C.10) 

ft 
in powers of <A and q to get 

(C.10) 

1 - coet - 1 - ^ Z - X (C. 1 1 ) 

where ID r V
F "G/cL = Kp̂ /Alrv is the diffusion constant in d 
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dimensions. For e ^ ^ o } we would get, through a 
similar procedure, 

I - 1 + "c - 3) <fx • , << 1 (C.12) 

In conclusion, for 

X(y, ie^tic^, ie^) « 1 , ov (C.13a) 

/v - iŵl'C- t if cjt(U)T«l (C. 13b) 
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Appendix D 
The Momentum Integrals I 

The momentum integrals I , 
pq 

pq-

^ hz*)* 

occur repeatedly in the theory of weakly disordered metals. 
One is generally interested in << p. . A s long as 
p, q > 1 the integral over is dominated by the vicinity 
of the Fermi surface and we may write 

= ft * . f <D'2> 
-co - i/zz ) v W^- u/2-C I 

Using the following identities, easily proved by induction, 

p-i 

2 = ± _ ( d- 3 a> 
( p - o ! d z ^ 

j p -q p /p+q -1) i 
A Z = CO ^ ' 2 (D.3b) 
lz? ( 1 - d ! 

one obtains from eq. (D.2), integrating by parts, 

-foo tp"! 

T - C - T ^ I l l l i i L * ( A w 1 / 1 \ (D.4) 
-CD "" 

The uq integral can be done by contour integration by 
closing the contour in the upper half plane, 
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I B = -2.HU ( - R I M - D I » C
 4 

and finally 

i s ^ m . x (d.5) 
m lp-ouq-i)! c 

Some examples: 

r ITT «eX (D.6a) 

I , = - I - Z"R m. (D.6b) 
: 

I r Airn0xi (D.6c) n 
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Appendix E 

The Polarization Insertion H'Cq.jiWe) and the Screened Coulomb 
Interaction 

The averaged screened Coulomb interaction ^ ( ^ n o ^ ) is 
given by the diagram of Fig. E1, 

v c%- '"'<.) ~ V s C q ) ( E - 1 ) 

1 - v ta) h c ^ u . ) 

where the bare interaction Vg(£) is 

Ve Ca Cion) = ilS:2 AM- (E.2a) 
* cjl 

- ^ (E.2b) 

The polarization insertion "TTC^^w^) which is also the 
density-density correlation function for the non-interacting 
system, is given by the same diagrams as the conductivity 

(see Fig. 4.7) but without the factors k , k' in the 
x x 

external vertices. For this reason the contribution of the 
diagram of Fig. 4.7(b) does not vanish. One has 

C ^ U , ) z \ Coiu ) + I 2L (dj: J^' GO**}, ie^+icO 
1 1 P ^ - W ^ V 1 

X Or GCs'M, GCi.ic^ ^ , Un) . 

(E.3 

The bare polarization, TT C <1, Aui.) , is 

TTe 4- 7L G C f c + ^ i e ^ u . i O (E.4) 
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f i g e .1 

The screened Coulomb interaction 
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We shall consider separately the case cjt̂  û c 
(diffusive regime) and Cj -t >> 1 . 
A. Diffusive Regime 

It is easily proven from eqs. (E.3), (E.4) that 
IX ( iw^) - . we take CJ

l>° for simplicity. 
When, in the second term of eq. (E.3) we have €yk ° 

the propagator Dq is (eqs. (4.7), (C.8)), 

m\L<l (€.*,.) ? (t^rux) s vr ; e*. u * * uî ) > o 
(E.5) 

Each term in the frequency sum of the second term of eq. (E-. 3) 
is smaller than the corresponding term in b>y a 
factor (eq. (C.8)) , 

x c q , xfim) = ul ( A g c * , ^ ie^co, ) g c * ^ ) 

ai _ l ; > o ( e - 6 ) 

Thus to leading order in 1/k_-t r 

i 2 - [ f + ? i^ic^ (E.7 
a J f atO J X 

w 
For <j ̂  t^x i we can expand the Green's functions in q 
and (j to get the leading term, £ 

: TT.c^u, ), — t j; (E.8) 

The integrals I are defined and calculated in Appendix D. 
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The factor ^ ( c o m e s from the frequency sum. We get, 
i 

using eq. (D.6a) 

_ i i x u lid + 

- • ^ + " ^ C } , ^ ) . (E.9) 
% + 

For the bare polarization "R&C^, ) we get, after 
performing the frequency sums, 

a ** 
tt.c^co,) = 2. i± (al i ( . f c ^ t ^ c t . l v ^ c ^ w i ^ . v i t t ) 

j (2.t04 j 
•<t 

Using = and expanding again in q, , 

t t . t ^ ) - L ( A 
* ) of)'1 j 

|ci) : & ( m ) ] 

it J(jh)4-
z r«. (e. 11) 

The spectral function and the real part of G Ik,? ) are 

1/r 
ci - + cvar) 1 

(E.12a) 

(E.12b) 
1 • ( v z o * 

It follows 

c 
(E.13) 
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and 
•hc 

" w ^ ) • ^ j [ a 
1 {2xt)1 h - u» 

f a 
j(2rr)d 

£ it f a 
j(2rr)d - 60 

_ 
it 

p c * (E.14) 

Hence the low q, limit tu)̂  ) is 

TTC cq, iu) ) = - 2 ( E- 1 5 ) 

Inserting this result in eq. (E.9) and using TT (q , C10 
we obtain, 

itco j w ) r t ( e - 1 6 ) 
4 iwti + tdq* 

Using this result in eq. (E.1) we get for the averaged screened 
Coulomb interaction, to leading order in q and f 

V ( ? , i « )-- ^ ^ . ̂  n (E. 17a) 

= 2TU* Eg2, . 2.J) (E.17b) 
q diccj 

where 1C the inverse screening radius is 

IC7 = 8T\ Tic C = Jl!:1 \ • I* £T> (E. 18a) 
it * 

t = Airî e1 = ; IH 2D (E. 18b) 

The spectral density C^Tjjr 2• Xrw» r j i s , then, for 

ŷ  "c « 1 , 

v 
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<rcC<L,"|)- ^ 1 1 — ** (E. 19a) 
T rji + el 

z W > X* 2 3> (E. 19b) 

where 6 - D . in our units is the inverse of the 
Bohr radius. Hence, in 3D 6 s 4(MH> 1 ̂ fA*^ a n d i n 2D 
£ = 1 (Kp £-) Oo2 / 2 T* . In both cases £ » £ p . 
b. 3 £ » 1 . 

It is shown in Appendix C that the integral 
is of order at most, for 1 (eq. C.10). Then, 
the particle-hole propagator Dq is again given by eq. (E.5) 
and we see that each term in the frequency sum of the second 
term of eq. (E.3) is again smaller than the corresponding term 
in ^oC^iui^) by a factor ^ Mq^t Thus 
for 1. we can neglect the second term in eq. (E.3) 
altogether and write, 

T T C ^ x w t ) cr TT0 Cq, ftco^) (E.20) 

We shall only be interested in the imaginary part of the 
a 

advanced function IT for # From eq. (E.10) , 

• 1 { ( f ) - f i v ° ) ] 

Kir l/x 
hlmfc) 

Ci-u!i)M'/2t)1 ( . v - 2 4 0 / 2 

where ctd-fl- denotes the element of solid angle in d dimensions 
normalized to unity (eqs. C3). 

The 0)̂  integral can be evaluated using the same contour 
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as in Appendix C (Fig. C.1). The contribution of the part of 
the contour between -p-Cco > - ̂  can be estimated, using 
the same procedure as in Appendix C, to be of order 
The contribution from the poles of the spectral functions is 
smallest for large q ( and is of order . So we 

r 
neglect the former contribution and write, 

x U 
) [v• n 0n»» (ivi^-lot+o/t)' 

V 

A i l ^ ^ 

(e.20) 

In this expression k s J Y^ i k^/fm, a n d "t = Cose 
it 

The thermal occupation factors restrict < Mo^c^kgTj 
and so V^ cj x - Vp<]I <j £ . in pure metals we get a similar 
expression with the last Lorentzian replaced by a delta-function 

) • The variable t ranges between ±1 and 
thus, if we have 

i j± _ 1 i « 1 - j- (E.21) 

we can make the replacement 

j tie )"• 
n V. A J (t-« + s v z ^ 
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We are considering only Co« €.p and so the condition of 
eq. (E.21) may be replaced by 

v q » <0 JL » — (E. 22a) 

-1 » Max. ( J£ JL I (E. 22b) 
2kf i tepl ) 

Including the initial restriction 1 we can summarize 
these equations as 

s a j l « n- s (E. 23a) 

T „ Moo. (id _L I « 1 (E. 23b) 
1 €F > KfIJ 

Subject to these restrictions, one obtains, by replacing the 
Lorentzian in eq. (E.20) by the corresponding delta-function, 

TT^Cq. CJ) z TmoU> . ̂  31> (E. 24a) 

- ; m z2> (E. 24b) 
J i- Csl^f) 

The Coulomb spectral function is 

CTc Ĉ ,̂ -) -- (E.25) 
[t- v ^ ) v ^ ] ' 

where Ti^C^,^) - We see from eq. (E.24) that 
i s l i n e a r i n frequency for ^ « eF for almost all 

values of q. Thus, to leading order in , 
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^ c ^ . n ) = — . T T z^.n) 

- 1 vj 1;^) (e. 26) 

where , the static screened Coulomb interaction, is 

v $ scg)z (e.27) 
i-
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