1,518 research outputs found

    Electrical Conductance of Molecular Wires

    Full text link
    Molecular wires (MW) are the fundamental building blocks for molecular electronic devices. They consist of a molecular unit connected to two continuum reservoirs of electrons (usually metallic leads). We rely on Landauer theory as the basis for studying the conductance properties of MW systems. This relates the lead to lead current to the transmission probability for an electron to scatter through the molecule. Two different methods have been developed for the study of this scattering. One is based on a solution of the Lippmann-Schwinger equation and the other solves for the {\bf t} matrix using Schroedinger's equation. We use our methodology to study two problems of current interest. The first MW system consists of 1,4 benzene-dithiolate (BDT) bonded to two gold nanocontacts. Our calculations show that the conductance is sensitive to the chemical bonding between the molecule and the leads. The second system we study highlights the interesting phenomenon of antiresonances in MW. We derive an analytic formula predicting at what energies antiresonances should occur in the transmission spectra of MW. A numerical calculation for a MW consisting of filter molecules attached to an active molecule shows the existence of an antiresonance at the energy predicted by our formula.Comment: 14 pages, 5 figure

    An assessment of financial sector rescue programmes

    Get PDF
    We analyse the wide array of rescue programmes adopted in several countries, following Lehman Brothers’ default in September 2008, in order to support banks and other financial institutions. We first provide an overview of the programmes, comparing their characteristics, magnitudes and participation rates across countries. We then consider the effects of the programmes on banks’ risk and valuation, looking at the behaviour of CDS premia and stock prices. We then proceed to analyse the issuance of government guaranteed bonds by banks, examining their impact on banks’ funding and highlighting undesired effects and distortions. Finally, we briefly review the recent evolution of bank lending to the private sector. We draw policy implications, in particular as regards the way of mitigating the distortions implied by such programmes and the need for an exit strategy.bank asset guarantees, capital injection, banks, financial sector, financial crisis, bank consolidation, bank mergers and acquisitions, event studies, government guaranteed bonds, credit crunch, exit strategy

    Charging induced asymmetry in molecular conductors

    Full text link
    We investigate the origin of asymmetry in various measured current-voltage (I-V) characteristics of molecules with no inherent spatial asymmetry, with particular focus on a recent break junction measurement. We argue that such asymmetry arises due to unequal coupling with the contacts and a consequent difference in charging effects, which can only be captured in a self-consistent model for molecular conduction. The direction of the asymmetry depends on the sign of the majority carriers in the molecule. For conduction through highest occupied molecular orbitals (i.e. HOMO or p-type conduction), the current is smaller for positive voltage on the stronger contact, while for conduction through lowest unoccupied molecular orbitals (i.e. LUMO or n-type conduction), the sense of the asymmetry is reversed. Within an extended Huckel description of the molecular chemistry and the contact microstructure (with two adjustable parameters, the position of the Fermi energy and the sulphur-gold bond length), an appropriate description of Poisson's equation, and a self-consistently coupled non-equilibrium Green's function (NEGF) description of transport, we achieve good agreement between theoretical and experimental I-V characteristics, both in shape as well as overall magnitude.Comment: length of the paper has been extended (4 pages to 6 pages), two new figures have been added (3 figures to 5 figures), has been accepted for PR

    Skipping Breakfast Leads to Weight Loss but Also Elevated Cholesterol Compared with Consuming Daily Breakfasts of Oat Porridge or Frosted Cornflakes in Overweight Individuals: A Randomised Controlled Trial

    Get PDF
    Eating breakfast may reduce appetite, body weight and CVD risk factors, but the breakfast type that produces the greatest health benefits remains unclear. We compared the effects of consuming a high-fibre breakfast, a non-fibre breakfast, or no-breakfast control on body weight, CVD risk factors and appetite. A total of thirty-six overweight participants (eighteen men and eighteen women) (mean age 33·9 (SD 7·5) years, mean BMI 32·8 (SD 4·7) kg/m2) were randomly assigned to consume oat porridge (n = 12), frosted cornflakes (n = 12) or a water control (n = 12) breakfast daily for 4 weeks. Appetite ratings were collected on the first day and weekly thereafter. Before and after the intervention, body weight, composition, blood pressure and resting energy expenditure (REE) were measured and a fasting blood sample was collected. Across the 4 weeks, fullness was higher and hunger was lower in the oat porridge group compared with the control group (P \u3c 0·05). Mean weight change over the intervention was significantly different in the control group (−1·18 (SD 1·16) kg) compared with both the cornflakes (−0·12 (SD 1·34) kg) and oat porridge (+0·26 (SD 0·91) kg) groups (P \u3c 0·05). However, the control group also showed elevated total cholesterol concentrations relative to the cornflakes and oat porridge groups (P \u3c 0·05). There were no differences between groups in changes in body composition, blood pressure, REE or other CVD risk factors. In conclusion, although skipping breakfast led to weight loss, it also resulted in increased total cholesterol concentrations compared with eating either oat porridge or frosted cornflakes for breakfast

    Tuning the conductance of molecular junctions: transparent versus tunneling regimes

    Get PDF
    We present a theoretical study of the transport characteristics of molecular junctions, where first-row diatomic molecules are attached to (001) gold and platinum electrodes. We find that the conductance of all of these junctions is of the order of the conductance quantum unit G0G_0, spelling out that they belong to the transparent regime. We further find that the transmission coefficients show wide plateaus as a function of the energy, instead of the usual sharp resonances that signal the molecular levels in the tunneling regime. We use Caroli's model to show that this is a rather generic property of the transparent regime of a junction, which is driven by a strong effective coupling between the delocalized molecular levels and the conduction channels at the electrodes. We analyse the transmission coefficients and chemical bonding of gold/Benzene and gold/Benzene-dithiolate (BDT) junctions to understand why the later show large resistances, while the former are highly conductive.Comment: 9 pages, 7 figure

    Antiresonances in Molecular Wires

    Full text link
    We present analytic and numerical studies based on Landauer theory of conductance antiresonances of molecular wires. Our analytic treatment is a solution of the Lippmann-Schwinger equation for the wire that includes the effects of the non-orthogonality of the atomic orbitals on different atoms exactly. The problem of non-orthogonality is treated by solving the transport problem in a new Hilbert space which is spanned by an orthogonal basis. An expression is derived for the energies at which antiresonances should occur for a molecular wire connected to a pair of single-channel 1D leads. From this expression we identify two distinct mechanisms that give rise to antiresonances under different circumstances. The exact treatment of non-orthogonality in the theory is found to be necessary to obtain reliable results. Our numerical simulations extend this work to multichannel leads and to molecular wires connected to 3D metallic nanocontacts. They demonstrate that our analytic results also provide a good description of these more complicated systems provided that certain well-defined conditions are met. These calculations suggest that antiresonances should be experimentally observable in the differential conductance of molecular wires of certain types.Comment: 22 pages, 5 figure

    Efficiency Improvements for Encrypt-to-Self

    Get PDF
    Recent work by Pijnenburg and Poettering (ESORICS'20) explores the novel cryptographic Encrypt-to-Self primitive that is dedicated to use cases of symmetric encryption where encryptor and decryptor coincide. The primitive is envisioned to be useful whenever a memory-bounded computing device is required to encrypt some data with the aim of temporarily depositing it on an untrusted storage device. While the new primitive protects the confidentiality of payloads as much as classic authenticated encryption primitives would do, it provides considerably better authenticity guarantees: Specifically, while classic solutions would completely fail in a context involving user corruptions, if an encrypt-to-self scheme is used to protect the data, all ciphertexts and messages fully remain unforgeable. To instantiate their encrypt-to-self primitive, Pijnenburg et al propose a mode of operation of the compression function of a hash function, with a carefully designed encoding function playing the central role in the serialization of the processed message and associated data. In the present work we revisit the design of this encoding function. Without questioning its adequacy for securely accomplishing the encrypt-to-self job, we improve on it from a technical/implementational perspective by proposing modifications that alleviate certain conditions that would inevitably require implementations to disrespect memory alignment restrictions imposed by the word-wise operation of modern CPUs, ultimately leading to performance penalties. Our main contributions are thus to propose an improved encoding function, to explain why it offers better performance, and to prove that it provides as much security as its predecessor. We finally report on our open-source implementation of the encrypt-to-self primitive based on the new encoding function.Comment: this is the full version of content that appears at CYSARM'2

    A mesoscopic ring as a XNOR gate: An exact result

    Full text link
    We describe XNOR gate response in a mesoscopic ring threaded by a magnetic flux ϕ\phi. The ring is attached symmetrically to two semi-infinite one-dimensional metallic electrodes and two gate voltages, viz, VaV_a and VbV_b, are applied in one arm of the ring which are treated as the inputs of the XNOR gate. The calculations are based on the tight-binding model and the Green's function method, which numerically compute the conductance-energy and current-voltage characteristics as functions of the ring-to-electrode coupling strength, magnetic flux and gate voltages. Our theoretical study shows that, for a particular value of ϕ\phi (=ϕ0/2=\phi_0/2) (ϕ0=ch/e\phi_0=ch/e, the elementary flux-quantum), a high output current (1) (in the logical sense) appears if both the two inputs to the gate are the same, while if one but not both inputs are high (1), a low output current (0) results. It clearly exhibits the XNOR gate behavior and this aspect may be utilized in designing an electronic logic gate.Comment: 8 pages, 5 figure

    Driving current through single organic molecules

    Full text link
    We investigate electronic transport through two types of conjugated molecules. Mechanically controlled break-junctions are used to couple thiol endgroups of single molecules to two gold electrodes. Current-voltage characteristics (IVs) of the metal-molecule-metal system are observed. These IVs reproduce the spatial symmetry of the molecules with respect to the direction of current flow. We hereby unambigously detect an intrinsic property of the molecule, and are able to distinguish the influence of both the molecule and the contact to the metal electrodes on the transport properties of the compound system.Comment: 4 pages, 5 figure
    • 

    corecore