15 research outputs found

    Re-positioning SoTL toward the T-shaped Community

    Get PDF
    Amongst a range of changes that have taken place within tertiary education, perhaps the most revolutionary has been a shift to student-centred approaches focused on life-long learning. Accompanying this approach to holistic higher education (HE) has been a growing interest in, and understanding of, the Scholarship of Teaching and Learning (SoTL). SoTL has, at its core, a deep concern with student learning and is therefore well-aligned with higher education’s renewed focus on its students. In this conceptual paper, we examine the impact of the T-shaped person which many tertiary institutions are operationalizing to inform and connect the development of students’ deep disciplinary knowledge with non-academic and employment readiness skills (such as communication, problem-solving, teamwork, and critical thinking). Importantly, we argue for a re-positioning of SoTL to complement and support this model, with SoTL as both the fulcrum and the fluid, multiple threads of discourse that are intricately entwined around the structure of the T-shaped model. We encourage our colleagues to strive to be T-shaped practitioners and we cast a vision of a T-shaped community. Here, all stakeholders within HE connect both their academic knowledge and holistic skills in collaborative ways to produce learners who flourish in modern society. The SoTL community plays a pivotal role in achieving this vision and is well-positioned to expand the current notion of SoTL toward a more holistic, interconnected, central role in HE

    Expression of genes encoding antioxidant enzymes in preimplantation mouse and cow embryos and primary bovine oviduct cultures employed for embryo coculture.

    Get PDF
    Preimplantation embryos from a variety of mammalian species contrast markedly in their response to culture in vitro. Murine preimplantation embryos display a wider tolerance than other mammalian species to culture environments, and this has contributed to the development of several effective defined culture media. Embryo coculture on somatic cells remains the most effective method of supporting reasonable rates of bovine preimplantation development in vitro. The patterns of gene expression for several antioxidant enzymes during preimplantation murine and bovine development were examined by use of the reverse transcription-polymerase chain reaction technique to determine whether the differential developmental capacity of mammalian preimplantation embryos in culture may reflect variations in the patterns of expression for a series of antioxidant enzymes. Transcripts for catalase, CuZn-containing superoxide dismutase (CuZn-SOD), Mn-SOD, glutathione peroxidase (GPX), and glutamylcysteine synthetase (GCS) were detected in mouse embryos at all stages of development regardless of in vivo or in vitro development. Preimplantation cow embryos produced by in vitro procedures expressed mRNAs for catalase, CuZn-SOD and GPX, whereas transcripts for Mn-SOD were not detected at any stage. GCS transcripts, although present in stages up to the morula, were not detected in cow blastocysts. Analysis of antioxidant gene expression in both bovine primary oviductal cell monolayer cultures and nonattached, ciliated oviductal cell vesicle cultures revealed a constitutive pattern of expression of all five enzymes for the 8-day culture interval. These experiments suggest that differences in gene expression may contribute to the variation in the ability of embryos to develop in vitro with respect to levels of oxygen and dependence on coculture

    Quercetin 3-Glucoside Protects Neuroblastoma (SH-SY5Y) Cells in Vitro against Oxidative Damage by Inducing Sterol Regulatory Element-binding Protein-2-mediated Cholesterol Biosynthesis

    Get PDF
    The flavonoid quercetin 3-glucoside (Q3G) protected SH-SY5Y, HEK293, and MCF-7 cells against hydrogen peroxide-induced oxidative stress. cDNA microarray studies suggested that Q3G-pretreated cells subjected to oxidative stress up-regulate the expression of genes associated with lipid and cholesterol biosynthesis. Q3G pretreatment elevated both the expression and activation of sterol regulatory element-binding protein-2 (SREBP-2) only in SH-SY5Y cells subjected to oxidative stress. Inhibition of SREBP-2 expression by small interfering RNA or small molecule inhibitors of 2,3-oxidosqualene:lanosterol cyclase or HMG-CoA reductase blocked Q3G-mediated cytoprotection in SH-SY5Y cells. By contrast, Q3G did not protect either HEK293 or MCF-7 cells via this signaling pathway. Moreover, the addition of isopentenyl pyrophosphate rescued SH-SY5Y cells from the inhibitory effect of HMG-CoA reductase inhibition. Last, Q3G pretreatment enhanced the incorporation of [(14)C]acetate into [(14)C]cholesterol in SH-SY5Y cells under oxidative stress. Taken together, these studies suggest a novel mechanism for flavonoid-induced cytoprotection in SH-SY5Y cells involving SREBP-2-mediated sterol synthesis that decreases lipid peroxidation by maintaining membrane integrity in the presence of oxidative stress

    A growth factor phenotype map for ovine preimplantation development.

    Get PDF
    The reverse transcription-polymerase chain reaction (RT-PCR) was used to determine the patterns of expression for several growth factor ligand and receptor genes during ovine preimplantation development. Transcripts for insulin-like growth factor (IGF)-I, IGF-II, and the receptors for insulin and IGF-I were detected throughout ovine preimplantation development from the 1-cell to the blastocyst stage. Transforming growth factor alpha (TGF alpha) transcripts were also detected throughout ovine preimplantation development. The mRNAs encoding basic fibroblast growth factor (bFGF) were detected in all stages of the ovine preimplantation embryo, although the relative abundance of this transcript consistently decreased from the 1-cell to the blastocyst stage, suggesting that it may represent a maternal transcript in early sheep embryos. Transcripts encoding ovine trophoblast protein (oTP) were detected only within blastocyst-stage embryos. Primary ovine oviduct cell cultures express the transcripts for IGF-II, IGF-I, TGF alpha, bFGF, TGF beta 1, and the receptors for insulin and IGF-I, suggesting that paracrine growth factor circuits may exist between the oviduct epithelium and the early ovine embryo. Transcripts for insulin, epidermal growth factor (EGF), and nerve growth factor (NGF) were not detected in any stage of the ovine preimplantation embryo or within the oviduct cell preparations. The expression of growth factor transcripts very early in mammalian development would predict that these molecules fulfil a necessary role(s) in supporting the progression of early embryos through the preimplantation interval. Our future efforts will be directed to understanding the nature of these putative regulatory pathways

    Elucidating the transcription cycle of the UV-inducible hyperthermophilic archaeal virus SSV1 by DNA microarrays.

    Get PDF
    The spindle-shaped Sulfolobus virus SSV1 was the first of a series of unusual and uniquely shaped viruses isolated from hyperthermophilic Archaea. Using whole-genome microarrays we show here that the circular 15.5 kb DNA genome of SSV1 exhibits a chronological regulation of its transcription upon UV irradiation, reminiscent to the life cycles of bacteriophages and eukaryotic viruses. The transcriptional cycle starts with a small UV-specific transcript and continues with early transcripts on both its flanks. The late transcripts appear after the onset of viral replication and are extended to their full lengths towards the end of the approximately 8.5 h cycle. While we detected only small differences in genome-wide analysis of the host Sulfolobus solfataricus comparing infected versus uninfected strains, we found a marked difference with respect to the strength and speed of the general UV response of the host. Models for the regulation of the virus cycle, and putative functions of genes in SSV1 are presented

    Response of the Hyperthermophilic Archaeon Sulfolobus solfataricus to UV Damage▿ †

    No full text
    In order to characterize the genome-wide transcriptional response of the hyperthermophilic, aerobic crenarchaeote Sulfolobus solfataricus to UV damage, we used high-density DNA microarrays which covered 3,368 genetic features encoded on the host genome, as well as the genes of several extrachromosomal genetic elements. While no significant up-regulation of genes potentially involved in direct DNA damage reversal was observed, a specific transcriptional UV response involving 55 genes could be dissected. Although flow cytometry showed only modest perturbation of the cell cycle, strong modulation of the transcript levels of the Cdc6 replication initiator genes was observed. Up-regulation of an operon encoding Mre11 and Rad50 homologs pointed to induction of recombinational repair. Consistent with this, DNA double-strand breaks were observed between 2 and 8 h after UV treatment, possibly resulting from replication fork collapse at damaged DNA sites. The strong transcriptional induction of genes which potentially encode functions for pilus formation suggested that conjugational activity might lead to enhanced exchange of genetic material. In support of this, a statistical microscopic analysis demonstrated that large cell aggregates formed upon UV exposure. Together, this provided supporting evidence to a link between recombinational repair and conjugation events

    Paternal MHC expression on mouse trophoblast affects uterine vascularization and fetal growth

    No full text
    The mammalian fetus represents a semiallograft within the maternal uterus yet is not rejected. This situation is particularly pronounced in species with a hemochorial type of placentation, such as humans and rodents, where maternal tissues and blood are in direct contact with fetal trophoblast and thus potentially with paternal antigens. The main polymorphic antigens responsible for graft rejection are MHC antigens. In humans the trophoblast cells invading into the decidua have a unique pattern of MHC class I expression characterized by both classical (HLA-C) and nonclassical (HLA-G and HLA-E) molecules. Whether such an unusual MHC repertoire on the surface of trophoblast is a conserved feature between species with hemochorial placentation has not been resolved. Here we demonstrate, using a range of methods, that C57BL/6 mouse trophoblast predominantly expresses only one MHC class I antigen, H2-K, at the cell surface of giant cells but lacks expression of nonclassical MHC molecules. Antigenic disparity between parental MHCs affects trophoblast-induced transformation of the uterine vasculature and, consequently, placental and fetal gowth. Maternal uterine blood vessels were more dilated, allowing for increased blood supply, in certain combinations of maternal and paternal MHC haplotypes, and these allogeneic fetuses and placentas were heavier at term compared with syngeneic controls. Thus, maternal–fetal immune interactions are instrumental to optimize reproductive success. This cross-talk has important implications for human disorders of pregnancy, such as preeclampsia and fetal growth restriction
    corecore