48 research outputs found

    Pharmacokinetic-Pharmacodynamic Modeling of the D2 and 5-HT2A Receptor Occupancy of Risperidone and Paliperidone in Rats

    Get PDF
    A pharmacokinetic-pharmacodynamic (PK-PD) model was developed to describe the time course of brain concentration and dopamine D-2 and serotonin 5-HT2A receptor occupancy (RO) of the atypical antipsychotic drugs risperidone and paliperidone in rats. A population approach was utilized to describe the PK-PD of risperidone and paliperidone using plasma and brain concentrations and D-2 and 5-HT2A RO data. A previously published physiology- and mechanism-based (PBPKPD) model describing brain concentrations and D-2 receptor binding in the striatum was expanded to include metabolite kinetics, active efflux from brain, and binding to 5-HT2A receptors in the frontal cortex. A two-compartment model best fit to the plasma PK profile of risperidone and paliperidone. The expanded PBPKPD model described brain concentrations and D-2 and 5-HT2A RO well. Inclusion of binding to 5-HT2A receptors was necessary to describe observed brain-to-plasma ratios accurately. Simulations showed that receptor affinity strongly influences brain-to-plasma ratio pattern. Binding to both D-2 and 5-HT2A receptors influences brain distribution of risperidone and paliperidone. This may stem from their high affinity for D-2 and 5-HT2A receptors. Receptor affinities and brain-to-plasma ratios may need to be considered before choosing the best PK-PD model for centrally active drugs

    Alterations to Melanocortinergic, GABAergic and Cannabinoid Neurotransmission Associated with Olanzapine-Induced Weight Gain

    Get PDF
    Background/Aim: Second generation antipsychotics (SGAs) are used to treat schizophrenia but can cause serious metabolic side-effects, such as obesity and diabetes. This study examined the effects of low to high doses of olanzapine on appetite/ metabolic regulatory signals in the hypothalamus and brainstem to elucidate the mechanisms underlying olanzapineinduced obesity. Methodology/Results: Levels of pro-opiomelanocortin (POMC), neuropeptide Y (NPY) and glutamic acid decarboxylase (GAD65, enzyme for GABA synthesis) mRNA expression, and cannabinoid CB1 receptor (CB1R) binding density (using [ 3 H]SR-141716A) were examined in the arcuate nucleus (Arc) and dorsal vagal complex (DVC) of female Sprague Dawley rats following 0.25, 0.5, 1.0 or 2.0 mg/kg olanzapine or vehicle (36/day, 14-days). Consistent with its weight gain liability, olanzapine significantly decreased anorexigenic POMC and increased orexigenic NPY mRNA expression in a dose-sensitive manner in the Arc. GAD65 mRNA expression increased and CB1R binding density decreased in the Arc and DVC. Alterations to neurotransmission signals in the brain significantly correlated with body weight and adiposity. The minimum dosage threshold required to induce weight gain in the rat was 0.5 mg/kg olanzapine. Conclusions: Olanzapine-induced weight gain is associated with reduced appetite-inhibiting POMC and increased NPY. This study also supports a role for the CB1R and GABA in the mechanisms underlying weight gain side-effects, possibly b

    Low-dose fluvoxamine as an adjunct to reduce olanzapine therapeutic dose requirements. A prospective dose-adjusted drug interaction strategy

    No full text
    Despite the advances in antipsychotic pharmacotherapy over the past decade, many atypical antipsychotic agents are not readily accessible by patients with major psychosis or in developing countries where the acquisition costs may be prohibitive. Olanzapine is an efficacious and widely prescribed atypical antipsychotic agent. In theory, olanzapine therapeutic dose requirement may be reduced during concurrent treatment with inhibitors of drug metabolism. In vitro studies suggest that smoking-inducible cytochrome P450 (CYP) 1A2 contributes to formation of the metabolite 4'-N-desmethylolanzapine. The present prospective study tested the hypothesis that olanzapine steady-state doses can be significantly decreased by coadministration of a low subclinical dose of fluvoxamine, a potent inhibitor of cytochrome P450 1A2. The study design followed a targeted ‘‘at-risk’’ population approach with a focus on smokers who were likely to exhibit increased cytochrome P450 1A2 expression. Patients with stable psychotic illness (N = 10 men, all smokers) and receiving chronic olanzapine treatment were evaluated for steady-state plasma concentrations of olanzapine and 40-Ndesmethylolanzapine. Subsequently, olanzapine dose was reduced from 17.5 ± 4.2 mg/d (mean ± SD) to 13.0 ± 3.3 mg/d, and a nontherapeutic dose of fluvoxamine (25 mg/d, PO) was added to regimen. Patients were reevaluated at 2, 4, and 6 weeks during olanzapine-fluvoxamine cotreatment. There was no significant change in olanzapine plasma concentration, antipsychotic response, or metabolic indices (eg, serum glucose and lipids) after dose reduction in the presence of fluvoxamine ( P > 0.05). 4'-N-desmethylolanzapine/olanzapine metabolic ratio decreased from 0.45 ± 0.20 at baseline to 0.25 ± 0.11 at week 6, suggesting inhibition of the cytochrome P450 1A2-mediated olanzapine 4'-N-demethylation by fluvoxamine ( P < 0.05). In conclusion, this prospective pilot study suggests that a 26% reduction in olanzapine therapeutic dose requirement may be achieved by coadministration of a nontherapeutic oral dose of fluvoxamine

    The role of CYP2D6 and ABCB1 pharmacogenetics in drug-naïve patients with first-episode schizophrenia treated with risperidone

    Get PDF
    PURPOSE: To evaluate the role of cytochrome 450 2D6 (CYP2D6) and ABCB1 variants on plasma risperidone concentrations and treatment response in 83 drug-naive patients experiencing a first episode of psychosis. ----- METHODS: All patients were treated with risperidone for 8 weeks. The CYP2D6 genotyping was performed by allele-specific PCR-restriction fragment length polymorphism analysis (for alleles *3,*4,*6) and long-distance PCR (for duplications and allele *5), while real-time PCR analysis was used for the ABCB1 G2677T/A and C3435T variants. Plasma concentrations of risperidone and 9-OH risperidone were measured by high-performance liquid chromatography. ----- RESULTS: The number of patients with the CYP2D6 wild type (wt)/wt, wt/mutation (mut) and mut/mut genotype was 43, 32 and 8, respectively. The number of patients with the ABCB1 2677G/G, G/T and T/T variants was 29, 42 and 12, respectively; those with the 3435CC, C/T and T/T variants was 25, 37 and 21, respectively. The CYP2D6 genotype had a strong effect on the steady-state dose-corrected plasma levels (C/D) of risperidone, its 9-OH metabolite and the active moiety, while the ABCB1 2677 T/T and 3435 T/T genotypes has similarly strong effects on the active moiety C/D. The CYP2D6 poor metabolizers had a significantly higher risperidone C/D and active moiety C/D and lower 9-OH risperidone C/D. The ABCB1 3435 T allele and the ABCB1 2667 T-3435 T haplotype carriers were more frequent among subjects without extrapyramidal syndromes. Patients showed significant improvements in positive and general symptoms, but not in negative symptoms. These changes were not related to variations in genetic and drug concentration data. ----- CONCLUSION: Our findings suggest that CYP2D6 and ABCB1 G2677T and C3435T may be useful determinants of risperidone plasma concentrations, but the clinical implications of these associations in relation to treatment response and side-effects remain unclear

    Determination of risperidone in human plasma by HPLC-MS/MS and its application to a pharmacokinetic study in Chinese volunteers

    No full text
    This study presents a rapid, specific and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) assay for determination of risperidone (RIS) in human serum using paroxetine as an internal standard (IS). An Alltima-C18 column (2.1 mm×100 mm, 3 μm) and a mobile phase consisting of 0.1% formic acid-acetonitrile (40:60, v/v) were used for separation. The analysis was performed by selected reaction monitoring (SRM) method, and the peak area of the m/z 411.3→191.1 transition for RIS was measured versus that of the m/z 330.1→192.1 transition for IS to generate the standard curves. The assay linearity of RIS was confirmed over the range 0.25~50.00 ng/ml and the limit of quantitation was 0.05 ng/ml. The linear range corresponds well with the serum concentrations of the analytes obtained in clinical pharmacokinetic studies. Intraday and interday relative standard deviations were 1.85%~9.09% and 1.56%~4.38%, respectively. The recovery of RIS from serum was in the range of 70.20%~84.50%. The method was successfully applied to investigate the bioequivalence between two kinds of tablets (test versus reference products) in 18 healthy male Chinese volunteers. The result suggests that two formulations are bioequivalent
    corecore