233 research outputs found
Ferromagnetic 0-pi Junctions as Classical Spins
The ground state of highly damped PdNi based 0-pi ferromagnetic Josephson
junctions shows a spontaneous half quantum vortex, sustained by a supercurrent
of undetermined sign. This supercurrent flows in the electrode of a Josephson
junction used as a detector and produces a phi(0)/4 shift in its magnetic
diffraction pattern. We have measured the statistics of the positive or
negative sign shift occurring at the superconducting transition of such a
junction. The randomness of the shift sign, the reproducibility of its
magnitude and the possibility of achieving exact flux compensation upon field
cooling: all these features show that 0-pi junctions behave as classical spins,
just as magnetic nanoparticles with uniaxial anisotropy.Comment: 4 pages, 4 figure
Cryogenic Calibration Setup for Broadband Complex Impedance Measurements
Reflection measurements give access to the complex impedance of a material on
a wide frequency range. This is of interest to study the dynamical properties
of various materials, for instance disordered superconductors. However
reflection measurements made at cryogenic temperature suffer from the
difficulty to reliably subtract the circuit contribution. Here we report on the
design and first tests of a setup able to precisely calibrate in situ the
sample reflection, at 4.2 K and up to 2 GHz, by switching and measuring, during
the same cool down, the sample and three calibration standards.Comment: (6 pages, 6 figures
Ferromagnetic resonance with a magnetic Josephson junction
We show experimentally and theoretically that there is a coupling via the
Aharonov-Bohm phase between the order parameter of a ferromagnet and a singlet,
s-wave, Josephson supercurrent. We have investigated the possibility of
measuring the dispersion of such spin waves by varying the magnetic field
applied in the plane of the junction and demonstrated the electromagnetic
nature of the coupling by the observation of magnetic resonance side-bands to
microwave induced Shapiro steps.Comment: 6 pages, 5 figure
Frequency-Domain Measurement of the Spin Imbalance Lifetime in Superconductors
We have measured the lifetime of spin imbalances in the quasiparticle
population of a superconductor () in the frequency domain. A
time-dependent spin imbalance is created by injecting spin-polarised electrons
at finite excitation frequencies into a thin-film mesoscopic superconductor
(Al) in an in-plane magnetic field (in the Pauli limit). The time-averaged
value of the spin imbalance signal as a function of excitation frequency,
shows a cut-off at . The spin imbalance
lifetime is relatively constant in the accessible ranges of temperatures, with
perhaps a slight increase with increasing magnetic field. Taking into account
sample thickness effects, is consistent with previous measurements and
of the order of the electron-electron scattering time . Our data are
qualitatively well-described by a theoretical model taking into account all
quasiparticle tunnelling processes from a normal metal into a superconductor.Comment: Includes Supplementary Informatio
Superconductor spintronics: Modeling spin and charge accumulation in out-of-equilibrium NS junctions subjected to Zeeman magnetic fields
We study the spin and charge accumulation in junctions between a
superconductor and a ferromagnet or a normal metal in the presence of a Zeeman
magnetic field, when the junction is taken out of equilibrium by applying a
voltage bias. We write down the most general form for the spin and charge
current in such junctions, taking into account all spin-resolved possible
tunneling processes. We make use of these forms to calculate the spin
accumulation in NS junctions subjected to a DC bias, and to an AC bias,
sinusoidal or rectangular. We observe that in the limit of negligeable changes
on the superconducting gap, the NS dynamical conductance is insensitive to spin
imbalance. Therefore to probe the spin accumulation in the superconductor, one
needs to separate the injection and detection point, i. e. the electrical spin
detection must be non-local. We address also the effect of the spin
accumulation induced in the normal leads by driving a spin current and its
effects on the detection of the spin accumulation in the superconductor.
Finally, we investigate the out-of-equilibrium spin susceptibility of the SC,
and we show that it deviates drastically from it's equilibrium value
Atomic manipulation of the gap in BiSrCaCuO
Single atom manipulation within doped correlated electron systems would be
highly beneficial to disentangle the influence of dopants, structural defects
and crystallographic characteristics on their local electronic states.
Unfortunately, their high diffusion barrier prevents conventional manipulation
techniques. Here, we demonstrate the possibility to reversibly manipulate
select sites in the optimally doped high temperature superconductor
BiSrCaCuO using the local electric field of the tip.
We show that upon shifting individual Bi atoms at the surface, the spectral gap
associated with superconductivity is seen to reversibly change by as much as 15
meV (~5% of the total gap size). Our toy model that captures all observed
characteristics suggests the field induces lateral movement of point-like
objects that create a local pairing potential in the CuO2 plane.Comment: Published in Science, this is the originally submitted manuscript
prior to changes during the review proces
- …