81 research outputs found
Recommended from our members
Mechanism for Coordinated RNA Packaging and Genome Replication by Rotavirus Polymerase VP1
Rotavirus RNA-dependent RNA polymerase, VP1, catalyzes RNA synthesis within a subviral particle. This activity depends on core shell protein VP2. A conserved sequence at the 3′ end of plusstrand RNA templates is important for polymerase association and genome replication. We have determined the structure of VP1 at 2.9 Å resolution, as apoenzyme and in complex with RNA. The cage-like enzyme is similar to reovirus λ3, with four tunnels leading to or from a central, catalytic cavity. A distinguishing characteristic of VP1 is specific recognition, by conserved features of the template-entry channel, of four bases, UGUG, in the conserved 3′ sequence. Well-defined interactions with these bases position the RNA so that its 3′ end overshoots the initiating register, producing a stable but catalytically inactive complex. We propose that specific 3′ end recognition selects rotavirus RNA for packaging and that VP2 activates the auto-inhibited VP1/RNA complex
to coordinate packaging and genome replication.Molecular and Cellular Biolog
Broad betacoronavirus neutralization by a stem helix–specific human antibody
The spillovers of betacoronaviruses in humans and the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlight the need for broad coronavirus countermeasures. We describe five monoclonal antibodies (mAbs) cross-reacting with the stem helix of multiple betacoronavirus spike glycoproteins isolated from COVID-19 convalescent individuals. Using structural and functional studies, we show that the mAb with the greatest breadth (S2P6) neutralizes pseudotyped viruses from three different subgenera through the inhibition of membrane fusion, and we delineate the molecular basis for its cross-reactivity. S2P6 reduces viral burden in hamsters challenged with SARS-CoV-2 through viral neutralization and Fc-mediated effector functions. Stem helix antibodies are rare, oftentimes of narrow specificity, and can acquire neutralization breadth through somatic mutations. These data provide a framework for structure-guided design of pan-betacoronavirus vaccines eliciting broad protection
ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies
The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations. Despite targeting a conserved motif, only some mAbs show broad neutralizing activity in vitro against alpha- and betacoronaviruses, including animal coronaviruses WIV-1 and PDF-2180. Two selected mAbs also neutralize Omicron BA.1 and BA.2 authentic viruses and reduce viral burden and pathology in vivo. Structural and functional analyses showed that the fusion peptide–specific mAbs bound with different modalities to a cryptic epitope hidden in prefusion stabilized spike, which became exposed upon binding of angiotensin-converting enzyme 2 (ACE2) or ACE2-mimicking mAbs
Maturation of SARS-CoV-2 Spike-specific memory B cells drives resilience to viral escape
SUMMARYMemory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month timeframe. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals. Whereas MBCs of infected individuals targeted both pre- and postfusion Spike (S), most vaccine-elicited MBCs were specific for prefusion S, consistent with the use of prefusion-stabilized S in mRNA vaccines. Furthermore, a large fraction of MBCs recognizing postfusion S cross-reacted with human betacoronaviruses. The avidity of MBC-derived and serum antibodies increased over time resulting in enhanced resilience to viral escape by SARS-CoV-2 variants, including Omicron BA.1 and BA.2 sub-lineages, albeit only partially for BA.4 and BA.5 sublineages. Overall, the maturation of high-affinity and broadly-reactive MBCs provides the basis for effective recall responses to future SARS-CoV-2 variants
Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies
SARS-CoV-2 transmission is uncontrolled in many parts of the world, compounded in some areas by higher transmission potential of the B1.1.7 variant1 now reported in 94 countries. It is unclear whether responses to SARS-CoV-2 vaccines based on the prototypic strain will be impacted by mutations found in B.1.1.7. Here we assessed immune responses following vaccination with mRNA-based vaccine BNT162b22. We measured neutralising antibody responses following first and second immunisations using pseudoviruses expressing the wild-type Spike protein or the 8 amino acid mutations found in the B.1.1.7 spike protein. The vaccine sera exhibited a broad range of neutralising titres against the wild-type pseudoviruses that were modestly reduced against B.1.1.7 variant. This reduction was also evident in sera from some convalescent patients. Decreased B.1.1.7 neutralisation was also observed with monoclonal antibodies targeting the N-terminal domain (9 out of 10), the RBM (5 out of 31), but not in RBD neutralising mAbs binding outside the RBM. Introduction of the E484K mutation in a B.1.1.7 background to reflect a newly emergent Variant of Concern (VOC 202102/02) led to a more substantial loss of neutralising activity by vaccine-elicited antibodies and mAbs (19 out of 31) over that conferred by the B.1.1.7 mutations alone. E484K emergence on a B.1.1.7 background represents a threat to the vaccine BNT162b
Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines
Understanding vaccine-elicited protection against SARS-CoV-2 variants and other sarbecoviruses is
key for guiding public health policies. We show that a clinical stage multivalent SARS-CoV-2 spike
receptor-binding domain nanoparticle vaccine (RBD-NP) protects mice from SARS-CoV-2 challenge
after a single immunization, indicating a potential dose-sparing strategy. We benchmarked serum
neutralizing activity elicited by RBD-NP in non-human primates against a lead prefusion-stabilized
SARS-CoV-2 spike (HexaPro) using a panel of circulating mutants. Polyclonal antibodies elicited by
both vaccines are similarly resilient to many RBD residue substitutions tested although mutations at
and surrounding position 484 have negative consequences for neutralization. Mosaic and cocktail
nanoparticle immunogens displaying multiple sarbecovirus RBDs elicit broad neutralizing activity in
mice and protect mice against SARS-CoV challenge even in the absence of SARS-CoV RBD in the
vaccine. This study provides proof of principle that multivalent sarbecovirus RBD-NPs induce
heterotypic protection and motivates advancing such broadly protective sarbecovirus vaccines to the
clinic
Structural insights into coronavirus entry
International audienceCoronaviruses (CoVs) have caused outbreaks of deadly pneumonia in humans since the beginning of the 21st century. The severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in 2002 and was responsible for an epidemic that spread to five continents with a fatality rate of 10% before being contained in 2003 (with additional cases reported in 2004). The Middle-East respiratory syndrome coronavirus (MERS-CoV) emerged in the Arabian Peninsula in 2012 and has caused recurrent outbreaks in humans with a fatality rate of 35%. SARS-CoV and MERS-CoV are zoonotic viruses that crossed the species barrier using bats/palm civets and dromedary camels, respectively. No specific treatments or vaccines have been approved against any of the six human coronaviruses, highlighting the need to investigate the principles governing viral entry and cross-species transmission as well as to prepare for zoonotic outbreaks which are likely to occur due to the large reservoir of CoVs found in mammals and birds. Here, we review our understanding of the infection mechanism used by coronaviruses derived from recent structural and biochemical studies
A base-specific recognition signal in the 5′ consensus sequence of rotavirus plus-strand RNAs promotes replication of the double-stranded RNA genome segments
Replication of the segmented double-stranded (ds)RNA genome of rotavirus requires the viral RNA-dependent RNA polymerase (RdRP) to use 11 different (+)RNAs as templates for (−) strand synthesis. Complementary sequences proximal to the 5′ and 3′ termini are predicted to direct cyclization of the (+)RNAs by forming panhandle structures from which short highly conserved terminal sequences protrude as single-stranded tails. Cell-free replication assays indicate that such structural organization of the 5′- and 3′-ends is required for efficient dsRNA synthesis. Multiple specifically recognized elements exist at the 3′-end that promote dsRNA synthesis including RdRP-recruitment signals and a (−) strand initiation sequence. In contrast to the 3′-end, the role of the 5′-end has been less well defined. In this study, we determined that the 5′-end contains a base-specific recognition signal that plays an important role in the assembly of the RdRP and cofactors into a stable initiation complex for (−) strand synthesis. The 5′ recognition signal is associated with the G2 residue of the 5′-consensus sequence, a residue that shows absolute conservation among all rotavirus groups (A, B, and C) examined to date. From our results, we suggest that rotavirus (+)RNA cyclization, although likely initiated by 5′- 3′ nucleotide complementarity, may be stabilized by RdRP-dependent bridging. Given that synthesis of the (−) strand on the (+)RNA template will disrupt 5′–3′ nucleotide interactions, RdRP-dependent bridging may be the sole mechanism by which the dsRNA product can be held in the necessary cyclized conformation required for efficient multiple rounds of transcription
Rotavirus NSP2 interferes with the core lattice protein VP2 in initiation of minus-strand synthesis
International audienceThe rotavirus nonstructural protein NSP2 self-assembles into stable octameric structures that possess nonspecific affinity for single-stranded (ss)RNA and RNA-RNA helix-destabilizing and NTPase activities. Furthermore, NSP2 is a component of replication intermediates with replicase activity and plays a critical role in the packaging and replication of the segmented dsRNA genome of rotavirus. To better understand the function of the protein in genome replication, we examined the effect that purified recombinant NSP2 had on the synthesis of dsRNA by the open core replication system. The results showed that NSP2 inhibited the synthesis of dsRNA from viral mRNA in vitro, in a concentration-dependent manner. The inhibition was overcome by adding increasing amounts of viral mRNA or nonviral ssRNA to the system, indicating that the inhibition was mediated by the nonspecific RNA-binding activity of NSP2. Further analysis revealed that NSP2 interfered with the ability of the open core proteins, GTP, and viral mRNA to form the initiation complex for (-) strand synthesis. Additional experiments indicated that NSP2 did not perturb recognition of viral mRNA by the viral RNA polymerase VP1, but rather interfered with the function of VP2, a protein that is essential for (-) strand initiation and dsRNA synthesis and that forms the T = 1 lattice of the virion core. In contrast to initiation, NSP2 did not inhibit (-) strand elongation. Collectively, the findings provide evidence that the temporal order of interaction of RNA-binding proteins with viral mRNA is a crucial factor impacting the formation of replication intermediates
- …