1,379 research outputs found

    Analytic treatment of the precessional (ballistic) contribution to the conventional magnetic switching

    Full text link
    We consider a switching of the magnetic moment with an easy axis anisotropy from an "up" to a "down" direction under the influence of an external magnetic field. The driving field is applied parallel to the easy axis and is continuously swept from a positive to a negative value. In addition, a small constant perpendicular bias field is present. It is shown that while the driving field switches the moment in a conventional way, the perpendicular field creates an admixture of the precessional (ballistic) switching that speeds up the switching process. Precessional contribution produces a non-monotonic dependence of the switching time on the field sweep time with a minimum at a particular sweep time value. We derive an analytic expressions for the optimal point, and for the entire dependence of the switching time on the field sweep time. Our approximation is valid in a wide parameter range and can be used to engineer and optimize of the magnetic memory devices.Comment: 13 pages, 7 figure

    On the Third Critical Speed for Rotating Bose-Einstein Condensates

    Get PDF
    We study a two-dimensional rotating Bose-Einstein condensate confined by an anharmonic trap in the framework of the Gross-Pitaevksii theory. We consider a rapid rotation regime close to the transition to a giant vortex state. It was proven in [M. Correggi {\it et al}, {\it J. Math. Phys. \textbf{53}(2012)] that such a transition occurs when the angular velocity is of order ε−4 \varepsilon ^{-4}, with ε−2 \varepsilon ^{-2} denoting the coefficient of the nonlinear term in the Gross-Pitaevskii functional and ε≪1 \varepsilon \ll 1 (Thomas-Fermi regime). In this paper we identify a finite value Ωc \Omega_{\mathrm{c}} such that, if Ω=Ω0/ε4 \Omega = \Omega_0/\varepsilon ^4 with Ω0>Ωc \Omega_0 > \Omega_{\mathrm{c}} , the condensate is in the giant vortex phase. Under the same condition we prove a refined energy asymptotics and an estimate of the winding number of any Gross-Pitaevskii minimizer.Comment: pdfLaTeX, 39 pages, minor changes, to appear in J. Math. Phy

    Moving Detectors in Cavities

    Get PDF
    We consider two-level detectors, coupled to a quantum scalar field, moving inside cavities. We highlight some pathological resonant effects due to abrupt boundaries, and decide to describe the cavity by switching smoothly the interaction by a time-dependent gate-like function. Considering uniformly accelerated trajectories, we show that some specific choices of non-adiabatic switching have led to hazardous interpretations about the enhancement of the Unruh effect in cavities. More specifically, we show that the emission/absorption ratio takes arbitrary high values according to the emitted quanta properties and to the transients undergone at the entrance and the exit of the cavity, {\it independently of the acceleration}. An explicit example is provided where we show that inertial and uniformly accelerated world-lines can even lead to the same ``pseudo-temperature''.Comment: 13 pages, 6 figures, version accepted in Phys.Rev.

    Enhancement of Persistent Current in Metal Rings by Correlated Disorder

    Full text link
    We study analytically the effect of a correlated random potential on the persistent current in a one-dimensional ring threaded by a magnetic flux ϕ\phi, using an Anderson tight-binding model. In our model, the system of N=2MN=2M atomic sites of the ring is assumed to be partitioned into MM pairs of identical nearest-neighbour sites (dimers). The site energies for different dimers are taken to be uncorrelated gaussian variables. For this system we obtain the exact flux-dependent energy levels to second order in the random site energies, using an earlier exact transfer matrix perturbation theory. These results are used to study the mean persistent current generated by Ne≤NN_e\leq N spinless electrons occupying the NeN_e lowest levels of the flux-dependent energy band at zero temperature. Detailed analyses are carried out in the limit 1≪Ne≪N1\ll N_e\ll N and for a half-filled band (Ne=N/2N_e=N/2), for magnetic fluxes −1/2<ϕ/ϕ0<1/2-1/2 <\phi/\phi_0<1/2. While the uncorrelated disorder leads to a reduction of the persistent current, the disorder correlation acts to enhance it. In particular, in the half-filled band case the correlated disorder leads to a global flux-dependent enhancement of persistent current which has the same form for even and odd NeN_e. At low filling of the energy band the effect of the disorder on the persistent current is found to depend on the parity of NeN_e: the correlated disorder yields a reduction of the current for odd NeN_e and an enhancement of the current for even NeN_e.Comment: 1

    Beats of the Magnetocapacitance Oscillations in Lateral Semiconductor Superlattices

    Full text link
    We present calculations on the magnetocapacitance of the two-dimensional electron gas in a lateral semiconductor superlattice under two-dimensional weak periodic potential modulation in the presence of a perpendicular magnetic field. Adopting a Gaussian broadening of magnetic-field-dependent width in the density of states, we present explicit and simple expressions for the magnetocapacitance, valid for the relevant weak magnetic fields and modulation strengths. As the modulation strength in both directions increase, beats of the magnetocapacitance oscillations are observed, in the low magnetic field range (Weiss-oscillations regime), which are absent in the one-dimensional weak modulation case.Comment: 11 pages, 7 figures, accepted by Mod. Phys. Lett. B (March 2007

    Thermodynamics of Rotating Black Branes in Gauss-Bonnet-Born-Infeld Gravity

    Full text link
    Considering both the Gauss-Bonnet and the Born-Infeld terms, which are on similar footing with regard to string corrections on the gravity side and electrodynamic side, we present a new class of rotating solutions in Gauss-Bonnet gravity with kk rotation parameters in the presence of a nonlinear electromagnetic field. These solutions, which are asymptotically anti-de Sitter in the presence of cosmological constant, may be interpreted as black brane solutions with inner and outer event horizons, an extreme black brane or naked singularity provided the metric parameters are chosen suitably. We calculate the finite action and conserved quantities of the solutions by using the counterterm method, and find that these quantities do not depend on the Gauss-Bonnet parameter. We also compute the temperature, the angular velocities, the electric charge and the electric potential. Then, we calculate the entropy of the black brane through the use of Gibbs-Duhem relation and show that it obeys the area law of entropy. We obtain a Smarr-type formula for the mass as a function of the entropy, the angular momenta and the charge, and show that the conserved and thermodynamic quantities satisfy the first law of thermodynamics. Finally, we perform a stability analysis in both the canonical and grand-canonical ensemble and show that the presence of a nonlinear electromagnetic field has no effect on the stability of the black branes, and they are stable in the whole phase space.Comment: 17 pages, one figur

    Coherent properties of nano-electromechanical systems

    Full text link
    We study the properties of a nano-electromechanical system in the coherent regime, where the electronic and vibrational time scales are of the same order. Employing a master equation approach, we obtain the stationary reduced density matrix retaining the coherences between vibrational states. Depending on the system parameters, two regimes are identified, characterized by either (ii) an {\em effective} thermal state with a temperature {\em lower} than that of the environment or (iiii) strong coherent effects. A marked cooling of the vibrational degree of freedom is observed with a suppression of the vibron Fano factor down to sub-Poissonian values and a reduction of the position and momentum quadratures.Comment: 12 pages, 11 figure

    Time delay in thin slabs with self-focusing Kerr-type nonlinearity

    Get PDF
    Time delays for an intense transverse electric (TE) wave propagating through a Kerr-type nonlinear slab are investigated. The relation between the bidirectional group delay and the dwell time is derived and it is shown that the difference between them can be separated into three terms. The first one is the familiar self interference time, due to the dispersion of the medium surrounding the slab. The other two terms are caused by the nonlinearity and oblique incidence of the TE wave. It is shown that the electric field distribution along the slab may be expressed in terms of Jacobi elliptic functions while the phase difference introduced by the slab is given in terms of incomplete elliptic integrals. The expressions for the field intensity dependent complex reflection and transmission coefficients are derived and the multivalued oscillatory behavior of the delay times for the case of a thin slab is demonstrated

    Multichannel demultiplexer/demodulator technologies for future satellite communication systems

    Get PDF
    NASA-Lewis' Space Electronics Div. supports ongoing research in advanced satellite communication architectures, onboard processing, and technology development. Recent studies indicate that meshed VSAT (very small aperture terminal) satellite communication networks using FDMA (frequency division multiple access) uplinks and TDMA (time division multiplexed) downlinks are required to meet future communication needs. One of the critical advancements in such a satellite communication network is the multichannel demultiplexer/demodulator (MCDD). The progress is described which was made in MCDD development using either acousto-optical, optical, or digital technologies

    Theory of Nonlinear Matter Waves in Optical Lattices

    Full text link
    We consider several effects of the matter wave dynamics which can be observed in Bose-Einstein condensates embedded into optical lattices. For low-density condensates we derive approximate evolution equations, the form of which depends on relation among the main spatial scales of the system. Reduction of the Gross-Pitaevskii equation to a lattice model (the tight-binding approximation) is also presented. Within the framework of the obtained models we consider modulational instability of the condensate, solitary and periodic matter waves, paying special attention to different limits of the solutions, i.e. to smooth movable gap solitons and to strongly localized discrete modes. We also discuss how the Feshbach resonance, a linear force, and lattice defects affect the nonlinear matter waves.Comment: Modern Physics Letters B (invited brief review), 25 pages, 9 figure
    • …
    corecore