295 research outputs found
Differential effects of altered patterns of movement and strain on joint cell behaviour and skeletal morphogenesis
SummaryObjectiveThere is increasing evidence that joint shape is a potent predictor of osteoarthritis (OA) risk; yet the cellular events underpinning joint morphogenesis remain unclear. We sought to develop a genetically tractable animal model to study the events controlling joint morphogenesis.DesignZebrafish larvae were subjected to periods of flaccid paralysis, rigid paralysis or hyperactivity. Immunohistochemistry and transgenic reporters were used to monitor changes to muscle and cartilage. Finite Element Models were generated to investigate the mechanical conditions of rigid paralysis. Principal component analysis was used to test variations in skeletal morphology and metrics for shape, orientation and size were applied to describe cell behaviour.ResultsWe show that flaccid and rigid paralysis and hypermobility affect cartilage element and joint shape. We describe differences between flaccid and rigid paralysis in regions showing high principal strain upon muscle contraction. We identify that altered shape and high strain occur in regions of cell differentiation and we show statistically significant changes to cell maturity occur in these regions in paralysed and hypermobile zebrafish.ConclusionWhile flaccid and rigid paralysis and hypermobility affect skeletal morphogenesis they do so in subtly different ways. We show that some cartilage regions are unaffected in conditions such as rigid paralysis where static force is applied, whereas joint morphogenesis is perturbed by both flaccid and rigid paralysis; suggesting that joints require dynamic movement for accurate morphogenesis. A better understanding of how biomechanics impacts skeletal cell behaviour will improve our understanding of how foetal mechanics shape the developing joint
Smooth vortex precession in superfluid 4He
We have measured a precessing superfluid vortex line, stretched from a wire
to the wall of a cylindrical cell. By contrast to previous experiments with a
similar geometry, the motion along the wall is smooth. The key difference is
probably that our wire is substantially off center. We verify several numerical
predictions about the motion, including an asymmetry in the precession
signature, the behavior of pinning events, and the temperature dependence of
the precession.Comment: 8 pages, 8 figure
Introduction of HIV-2 and multiple HIV-1 subtypes to Lebanon.
HIV genetic variability, phylogenetic relationships, and transmission dynamics were analyzed in 26 HIV-infected patients from Lebanon. Twenty-five specimens were identified as HIV-1 and one as HIV-2 subtype B. The 25 strains were classified into six env-C2-V3 HIV-1 subtypes: B (n = 10), A (n = 11), C (n = 1), D (n = 1), G (n = 1), and unclassifiable. Potential recombinants combining parts of viral regions from different subtypes Aenv/Dpol/Agag, Genv/Apol, and the unclassifiable-subtype(env)/unclassifiable-subtype(pol)/Agag were found in three patients. Epidemiologic analysis of travel histories and behavioral risks indicated that HIV-1 and HIV-2 subtypes reflected HIV strains prevalent in countries visited by patients or their sex partners. Spread of complex HIV-subtype distribution patterns to regions where HIV is not endemic may be more common than previously thought. Blood screening for both HIV-1 and HIV-2 in Lebanon is recommended to protect the blood supply. HIV subtype data provide information for vaccine development
Craniofacial development illuminates the evolution of nightbirds (Strisores)
Evolutionary variation in ontogeny played a central role in the origin of the avian skull. However, its influence in subsequent bird evolution is largely unexplored. We assess the links between ontogenetic and evolutionary variation of skull morphology in Strisores (nightbirds). Nightbirds span an exceptional range of ecologies, sizes, life-history traits and craniofacial morphologies constituting an ideal test for evo-devo hypotheses of avian craniofacial evolution. These morphologies include superficially 'juvenile-like' broad, flat skulls with short rostra and large orbits in swifts, nightjars and allied lineages, and the elongate, narrow rostra and globular skulls of hummingbirds. Here, we show that nightbird skulls undergo large ontogenetic shape changes that differ strongly from widespread avian patterns. While the superficially juvenile-like skull morphology of many adult nightbirds results from convergent evolution, rather than paedomorphosis, the divergent cranial morphology of hummingbirds originates from an evolutionary reversal to a more typical avian ontogenetic trajectory combined with accelerated ontogenetic shape change. Our findings underscore the evolutionary lability of cranial growth and development in birds, and the underappreciated role of this aspect of phenotypic variability in the macroevolutionary diversification of the amniote skull
Watching dark solitons decay into vortex rings in a Bose-Einstein condensate
We have created spatial dark solitons in two-component Bose-Einstein
condensates in which the soliton exists in one of the condensate components and
the soliton nodal plane is filled with the second component. The filled
solitons are stable for hundreds of milliseconds. The filling can be
selectively removed, making the soliton more susceptible to dynamical
instabilities. For a condensate in a spherically symmetric potential, these
instabilities cause the dark soliton to decay into stable vortex rings. We have
imaged the resulting vortex rings.Comment: 4 pages, 4 figure
No association between islet cell antibodies and coxsackie B, mumps, rubella and cytomegalovirus antibodies in non-diabetic individuals aged 7–19 years
Viral antibodies were tested in a cohort of 44 isletcell antibody-positive individuals age 7–19 years, and 44 of their islet cell antibody-negative age and sex-matched classmates selected from a population study of 4208 pupils who had been screened for islet cell antibodies. Anti-coxsackie B1-5 IgM responses were detected in 14 of 44 (32%) of the islet cell antibody-positive subjects and in 7 of 44 (16%) control subjects. This difference did not reach the level of statistical significance. None of the islet cell antibody-positive subjects had specific IgM antibodies to mumps, rubella, or cytomegalovirus. There was also no increase in the prevalence or the mean titres of anti-mumps-IgG or IgA and anti-cytomegalovirus-IgG in islet cell antibody-positive subjects compared to control subjects. These results do not suggest any association between islet cell antibodies, and possibly insulitis, with recent mumps, rubella or cytomegalo virus infection. Further studies are required to clarify the relationship between islet cell antibodies and coxsackie B virus infections
- …