643 research outputs found

    Paradigms and Controversies in the Treatment of HIV-Related Burkitt Lymphoma

    Get PDF
    Burkitt lymphoma (BL) is a very aggressive subtype of non-Hodgkin's lymphoma that occurs with higher frequency in patients with HIV/AIDS. Patients with HIV-related BL (HIV-BL) are usually treated with high-intensity, multi-agent chemotherapy regimens. The addition of the monoclonal antibody Rituximab to chemotherapy has also been studied in this setting. The potential risks and benefits of commonly used regimens are reviewed herein, along with a discussion of controversial issues in the practical management of HIV-BL, including concurrent anti-retroviral therapy, treatment of relapsed and/or refractory disease, and the role of stem cell transplantation

    Equilibrium solutions of the shallow water equations

    Get PDF
    A statistical method for calculating equilibrium solutions of the shallow water equations, a model of essentially 2-d fluid flow with a free surface, is described. The model contains a competing acoustic turbulent {\it direct} energy cascade, and a 2-d turbulent {\it inverse} energy cascade. It is shown, nonetheless that, just as in the corresponding theory of the inviscid Euler equation, the infinite number of conserved quantities constrain the flow sufficiently to produce nontrivial large-scale vortex structures which are solutions to a set of explicitly derived coupled nonlinear partial differential equations.Comment: 4 pages, no figures. Submitted to Physical Review Letter

    Complex Patterns in Reaction-Diffusion Systems: A Tale of Two Front Instabilities

    Full text link
    Two front instabilities in a reaction-diffusion system are shown to lead to the formation of complex patterns. The first is an instability to transverse modulations that drives the formation of labyrinthine patterns. The second is a Nonequilibrium Ising-Bloch (NIB) bifurcation that renders a stationary planar front unstable and gives rise to a pair of counterpropagating fronts. Near the NIB bifurcation the relation of the front velocity to curvature is highly nonlinear and transitions between counterpropagating fronts become feasible. Nonuniformly curved fronts may undergo local front transitions that nucleate spiral-vortex pairs. These nucleation events provide the ingredient needed to initiate spot splitting and spiral turbulence. Similar spatio-temporal processes have been observed recently in the ferrocyanide-iodate-sulfite reaction.Comment: Text: 14 pages compressed Postscript (90kb) Figures: 9 pages compressed Postscript (368kb

    Inverse monoids and immersions of 2-complexes

    Get PDF
    It is well known that under mild conditions on a connected topological space X\mathcal X, connected covers of X\mathcal X may be classified via conjugacy classes of subgroups of the fundamental group of X\mathcal X. In this paper, we extend these results to the study of immersions into 2-dimensional CW-complexes. An immersion f:DCf : {\mathcal D} \rightarrow \mathcal C between CW-complexes is a cellular map such that each point yDy \in {\mathcal D} has a neighborhood UU that is mapped homeomorphically onto f(U)f(U) by ff. In order to classify immersions into a 2-dimensional CW-complex C\mathcal C, we need to replace the fundamental group of C\mathcal C by an appropriate inverse monoid. We show how conjugacy classes of the closed inverse submonoids of this inverse monoid may be used to classify connected immersions into the complex

    Local Spin-Gauge Symmetry of the Bose-Einstein Condensates in Atomic Gases

    Full text link
    The Bose-Einstein condensates of alkali atomic gases are spinor fields with local ``spin-gauge" symmetry. This symmetry is manifested by a superfluid velocity us{\bf u}_{s} (or gauge field) generated by the Berry phase of the spin field. In ``static" traps, us{\bf u}_{s} splits the degeneracy of the harmonic energy levels, breaks the inversion symmetry of the vortex nucleation frequency Ωc1{\bf \Omega}_{c1}, and can lead to {\em vortex ground states}. The inversion symmetry of Ωc1{\bf \Omega}_{c1}, however, is not broken in ``dynamic" traps. Rotations of the atom cloud can be generated by adiabatic effects without physically rotating the entire trap.Comment: Typos in the previous version corrected, thanks to the careful reading of Daniel L. Cox. 13 pages + 2 Figures in uuencode + gzip for

    Effect of daptomycin and vancomycin on Staphylococcus epidermidis biofilms: An in vitro assessment using fluorescence in situ hybridization

    Get PDF
    Colonization of in-dwelling catheters by microbial biofilms is a major concern in patient health eventually leading to catheter-related blood stream infections. Biofilms are less susceptible to standard antibiotic therapies that are effective against planktonic bacteria. Standard procedure for the detection of microorganisms on the catheter tip is culture. However, viable but non-culturable cells (VBNCs) may be missed. The aim of this study was to evaluate the use of fluorescence in situ hybridization (FISH) as an indicator to visualize and quantify the effect of the antibiotics daptomycin and vancomycin on biofilms in situ. We established an in vitro catheter biofilm model of Staphylococcus epidermidis biofilms on polyurethane catheters. Biofilm activity was measured by FISH and correlated to colony forming units (CFU) data. Digital image analysis was used for quantification of total biofilm mass and the area of the FISH positive biofilm cells. FISH showed a pronounced effect of both antibiotics on the biofilms, with daptomycin having a significantly stronger effect in terms of both reduction of biofilm mass and number of FISH-positive cells. This supports the anti-biofilm capacity of daptomycin. Interestingly, neither antibiotic was able to eradicate all of the FISH-positive cells. In summary, FISH succeeded in visualization, quantification, and localization of antibiotic activity on biofilms. This technique adds a new tool to the arsenal of test systems for anti-biofilm compounds. FISH is a valuable complementary technique to CFU since it can be highly standardized and provides information on biofilm architecture and quantity and localization of survivor cells

    Observation of critical phenomena and self-similarity in the gravitational collapse of radiation fluid

    Full text link
    We observe critical phenomena in spherical collapse of radiation fluid. A sequence of spacetimes S[η]\cal{S}[\eta] is numerically computed, containing models (η1\eta\ll 1) that adiabatically disperse and models (η1\eta\gg 1) that form a black hole. Near the critical point (ηc\eta_c), evolutions develop a self-similar region within which collapse is balanced by a strong, inward-moving rarefaction wave that holds m(r)/rm(r)/r constant as a function of a self-similar coordinate ξ\xi. The self-similar solution is known and we show near-critical evolutions asymptotically approaching it. A critical exponent β0.36\beta \simeq 0.36 is found for supercritical (η>ηc\eta>\eta_c) models.Comment: 10 pages (LaTeX) (to appear in Phys. Rev. Lett.), TAR-039-UN

    Critical collapse of collisionless matter - a numerical investigation

    Get PDF
    In recent years the threshold of black hole formation in spherically symmetric gravitational collapse has been studied for a variety of matter models. In this paper the corresponding issue is investigated for a matter model significantly different from those considered so far in this context. We study the transition from dispersion to black hole formation in the collapse of collisionless matter when the initial data is scaled. This is done by means of a numerical code similar to those commonly used in plasma physics. The result is that for the initial data for which the solutions were computed, most of the matter falls into the black hole whenever a black hole is formed. This results in a discontinuity in the mass of the black hole at the onset of black hole formation.Comment: 22 pages, LaTeX, 7 figures (ps-files, automatically included using psfig
    corecore