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Abstract. It is well known that under mild conditions on a connected
topological space X , connected covers of X may be classified via conju-
gacy classes of subgroups of the fundamental group of X . In this paper,
we extend these results to the study of immersions into 2-dimensional
CW -complexes. An immersion f : D → C between CW -complexes is
a cellular map such that each point y ∈ D has a neighborhood U that
is mapped homeomorphically onto f(U) by f . In order to classify im-
mersions into a 2-dimensional CW -complex C, we need to replace the
fundamental group of C by an appropriate inverse monoid. We show
how conjugacy classes of the closed inverse submonoids of this inverse
monoid may be used to classify connected immersions into the complex.

Dedicated to Stuart Margolis, on the occasion of his 60th birthday.

1. Introduction

It is well known that under mild restrictions on a topological space X ,
connected covers of X may be classified via conjugacy classes of subgroups
of the fundamental group of X . For this fact, and for general background
in topology, we refer to the book by Munkres [6].

In this paper we study connected immersions between finite-dimensional
CW -complexes. A CW -complex C is obtained from a discrete set C0 (the
0-skeleton of C) by iteratively attaching cells of dimension n to the (n− 1)-
skeleton Cn−1 of C for n ≥ 1. We refer the reader to Hatcher’s text [1], for
the precise definition and basic properties of CW -complexes. In particular a
continuous map between CW -complexes is homotopic to a cellular map ([1],
Theorem 4.8), that is a continuous function that maps cells to cells of the
same or lower dimension, so we will regard maps between CW -complexes
as cellular maps. A subcomplex of a CW -complex is a closed subspace that
is a union of cells.

An immersion of a CW -complex D into a CW -complex C is a cellular
map f : D → C such that each point y ∈ D has a neighborhood U which
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is mapped homeomorphically onto f(U) by f . So f maps n-cells to n-cells.
Thus if C is an n-dimensional CW -complex, then D is an m-dimensional
CW -complex with m ≤ n. Every subcomplex of an n-dimensional CW -
complex C immerses into C. Every covering space of a CW -complex C has a
CW -complex structure, and every covering map is in particular an immer-
sion.

We classify connected immersions into a 2-dimensional CW -complex C via
conjugacy classes of closed inverse submonoids of a certain inverse monoid
associated with C. The closed inverse submonoids of this inverse monoid
enable us to keep track of the 1-cells and 2-cells of C that lift under the
immersion, in much the same way as the subgroups of the fundamental group
of C enable us to encode coverings of C. We provide an iterative process for
constructing the immersion associated with a closed inverse submonoid of
this inverse monoid. In many cases this iterative procedure provides an
algorithm for constructing the immersion, in particular if the closed inverse
submonoid is finitely generated and C has finitely many 2-cells.

Section 2 of the paper outlines basic material on presentations of inverse
monoids that we will need to build an inverse monoid associated with a
2-complex C. Section 3 describes an iterative procedure for constructing
closed inverse submonoids of an inverse monoid from generators for the sub-
monoid. The main results of the paper linking immersions over a 2-complex
C and closed inverse submonoids of an inverse monoid associated with C are
described in detail in Section 4 of the paper (Theorem 4.9, Theorem 4.10
and Theorem 4.11). We close in Section 5 with several examples illustrating
the connections between immersions over 2-complexes and the associated
closed inverse submonoids.

These results extend some work of Margolis and Meakin [5] that classifies
connected immersions over graphs (1-dimensional CW -complexes) via closed
inverse submonoids of free inverse monoids. Some related work may be found
in the thesis of Williamson [13]. However, the notion of immersion in this
paper is considerably more general than the notion of immersion between
2-complexes in [13].

2. X-graphs and inverse monoids

Let X be a set and X−1 a disjoint set in one-one correspondence with X
via a map x → x−1 and define (x−1)−1 = x. We extend this to a map on
(X ∪X−1)∗ by defining (x1x2 · · ·xn)−1 = x−1

n · · ·x−1
2 x−1

1 , giving (X ∪X−1)∗

the structure of the free monoid with involution on X. Throughout this
paper by an X-graph (or just an edge-labeled graph if the labeling set X is
understood) we mean a strongly connected digraph Γ with edges labeled
over the set X ∪X−1 such that the labeling is consistent with an involution:
that is, there is an edge labeled x ∈ X ∪X−1 from vertex v1 to vertex v2 if
and only if there is an inverse edge labeled x−1 from v2 to v1. The initial
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vertex of an edge e will be denoted by α(e) and the terminal vertex by ω(e).
If X = ∅, then we view Γ as the graph with one vertex and no edges.

The label on an edge e is denoted by l(e) ∈ X ∪X−1. There is an evident
notion of path in an X-graph. A path p with initial vertex v1 and terminal
vertex v2 will be called a (v1, v2) path. The initial (resp. terminal) vertex
of a path p will be denoted by α(p) (resp. ω(p)). The label on the path
p = e1e2 . . . ek is the word l(p) = l(e1)l(e2) . . . l(ek) ∈ (X ∪X−1)∗.

It is customary when sketching diagrams of such graphs to include just
the positively labeled edges (with labels from X) in the diagram.
X-graphs occur frequently in the literature. For example, the bouquet of

|X| circles is the X-graph BX with one vertex and one positively labeled
edge labeled by x for each x ∈ X. The Cayley graph Γ(G,X) of a group G
relative to a set X of generators is an X-graph: its vertices are the elements
of G and it has an edge labeled by x from g to gx for each x ∈ X ∪X−1.

If we designate an initial vertex (state) α and a terminal vertex (state) β of
Γ, then the birooted X-graph A = (α,Γ, β) may be viewed as an automaton.
See for example the book of Hopcroft and Ullman [2] for basic information
about automata theory. The language accepted by this automaton is the
subset L(A) of (X ∪X−1)∗ consisting of the words in (X ∪X−1)∗ that label
paths in Γ starting at α and ending at β. This automaton is called an inverse
automaton if it is deterministic (and hence injective), i.e. if for each vertex
v of Γ there is at most one edge with a given label starting or ending at v.
A deterministic X-graph Γ determines an immersion of Γ into BX , obtained
by mapping an edge labeled by x ∈ X ∪X−1 onto the corresponding edge
in BX .

Recall that an inverse monoid is a monoid M with the property that
for each a ∈ M there exists a unique element a−1 ∈ M (the inverse of a)
such that a = aa−1a and a−1 = a−1aa−1. Every inverse monoid may be
embedded in a suitable symmetric inverse monoid SIM(X). Here SIM(X)
is the monoid of all partial injective functions from X to X (i.e. bijections
between subsets of X) with respect to the usual composition of partial maps.
If Γ is a deterministic X-graph, then each letter x ∈ X ∪ X−1 determines
a partial injection of the set V of vertices of Γ that maps a vertex v1 to a
vertex v2 if there is an edge labeled by x from v1 to v2. The submonoid
of SIM(V ) generated by these partial maps is an inverse monoid, called the
transition monoid of the graph Γ.

We refer the reader to the books by Lawson [3] or Petrich [8] for the
basic theory of inverse monoids. In particular, the natural partial order on
an inverse monoid M is defined by a ≤ b iff a = eb for some idempotent
e ∈ M , or equivalently, if a = aa−1b. This corresponds to restriction of
partial injective maps when M = SIM(X). See [3] or [8] for the important
role that the natural partial order plays in the structure of inverse monoids.
If we factor an inverse monoid M by the congruence generated by pairs of
the form (aa−1, 1), a ∈ M , we obtain a group. This congruence is denoted
by σ, and M/σ is in fact the greatest group homomorphic image of M .
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Since inverse monoids form a variety of algebras (in the sense of universal
algebra - i.e. an equationally defined class of algebras), free inverse monoids
exist. We will denote the free inverse monoid on a set X by FIM(X). This
is the quotient of (X ∪ X−1)∗, the free monoid with involution, by the
congruence that identifies ww−1w with w and ww−1uu−1 with uu−1ww−1

for all words u,w ∈ (X ∪X−1)∗. See [8] or [3] for much information about
FIM(X). In particular, [8] and [3] provide an exposition of Munn’s solution
[7] to the word problem for FIM(X) via birooted edge-labeled trees called
Munn trees.

In his thesis [11] and paper [12], Stephen initiated the theory of presen-
tations of inverse monoids by extending Munn’s results about free inverse
monoids to arbitrary presentations of inverse monoids. Here, a presentation
of an inverse monoid M , denoted M = Inv〈X | ui = vi, i ∈ I〉 (where the
ui and vi are words in (X ∪X−1)∗) is the quotient of FIM(X) obtained by
imposing the relations ui = vi in the usual way. In order to study the word
problem for such presentations, Stephen considers the Schützenberger graph
SΓ(M,X,w) (or simply SΓ(w) if the presentation is understood) of each
word w ∈ (X ∪ X−1)∗. The Schützenberger graph of w is the restriction
of the Cayley graph of M to the R-class of w in M . That is, the vertices
of SΓ(w) are the elements u ∈ M such that uu−1 = ww−1 in M ; there
is an edge labeled by x ∈ X ∪ X−1 from u to v if uu−1 = vv−1 = ww−1

and ux = v in M . (Here, for simplicity of notation, we are using the same
notation for a word w ∈ (X∪X−1)∗ and its natural image in M ; the context
guarantees that no confusion should occur.)

The Schützenberger graphs of M are just the strongly connected com-
ponents of the Cayley graph of M relative to the set X of generators
for M . Of course, if G is a group, then it has just one Schützenberger
graph, which is the Cayley graph Γ(G,X). The Schützenberger automaton
SA(w) of a word w ∈ (X ∪ X−1)∗ is defined to be the birooted X-graph
SA(w) = (ww−1, SΓ(w), w). Thus SA(w) is an inverse automaton. In his
paper [12], Stephen proves the following result.

Theorem 2.1. Let M = Inv〈X | ui = vi, i ∈ I〉 be a presentation of an
inverse monoid. Then

(a) For each word u ∈ (X ∪X−1)∗, the language accepted by the
Schützenberger automaton SA(u) is the set of all words w ∈ (X ∪ X−1)∗

such that u ≤ w in the natural partial order on M .
(b) u = w in M iff u ∈ L(SA(w)) and w ∈ L(SA(u)).
(c) The word problem for M is decidable iff there is an algorithm for

deciding membership in L(SA(w)) for each word w ∈ (X ∪X−1)∗.

3. Closed inverse submonoids of inverse monoids

For each subset N of an inverse monoid M , we denote by Nω the set of
all elements m ∈M such that m ≥ n for some n ∈ N . The subset N of M is
called closed if N = Nω. Thus the image in M of the language accepted by
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a Schützenberger automaton SA(u) of a word u relative to a presentation
of M is a closed subset of M .

Closed inverse submonoids of an inverse monoid M arise naturally in the
representation theory of M by partial injections on a set [9]. An inverse
monoid M acts (on the right) by injective partial functions on a set Q if
there is a homomorphism from M to SIM(Q). Denote by qm the image of q
under the action of m if q is in the domain of the action by m. The following
basic fact is well known (see [9]).

Proposition 3.1. If M acts on Q by injective partial functions, then for
every q ∈ Q, Stab(q) = {m ∈M : qm = q} is a closed inverse submonoid of
M .

Conversely, given a closed inverse submonoid H of M , we can construct a
transitive representation of M as follows. A subset of M of the form (Hm)ω

where mm−1 ∈ H is called a right ω-coset of H. Let XH denote the set of
right ω-cosets of H. If m ∈ M , define an action on XH by Y.m = (Y m)ω

if (Y m)ω ∈ XH and undefined otherwise. This defines a transitive action
of M on XH . Conversely, if M acts transitively on Q, then this action is
equivalent in the obvious sense to the action of M on the right ω-cosets of
Stab(q) in M for any q ∈ Q. See [9] or [8] for details.

The ω-coset graph Γ(H,X) (or just ΓH if X is understood) of a closed
inverse submonoid H of an X-generated inverse monoid M is constructed
as follows. The set of vertices of ΓH is XH and there is an edge labeled
by x ∈ X ∪ X−1 from (Ha)ω to (Hb)ω if (Hb)ω = (Hax)ω. Then ΓH is
a deterministic X-graph. The birooted X-graph (H,ΓH , H) is called the
ω-coset automaton of H. The language accepted by this automaton is H (or
more precisely the set of words w ∈ (X ∪X−1)∗ whose natural image in M
is in H). Clearly, if G is a group generated by X, then ΓH coincides with
the coset graph of the subgroup H of G.

Let M be an inverse monoid given by a presentation M = Inv〈X | ui =
vi, i ∈ I〉, and let Y be a subset of (X ∪X−1)∗. Let 〈Y 〉ω denote the closed
inverse submonoid of M generated by the natural image of Y in M . We
now provide an iterative construction of the ω-coset automaton of 〈Y 〉ω.
The construction extends the well-known construction of Stallings [10] of
a finite graph associated with each finitely generated subgroup of a free
group. See also [5] for the automata-theoretic point of view on Stallings’
construction.

In [11], Stephen shows that the class of all birooted X-graphs forms a
cocomplete category, and hence directed systems of birooted X-graphs have
direct limits in this category. See Mac Lane [4] for background in category
theory. Morphisms in this category are graph morphisms that take edges to
edges and preserve edge labelings and initial (terminal) roots.

Given a finite presentation M = Inv〈X | ui = vi, i = 1, . . . , n〉 of an in-
verse monoid, we consider two types of operations on X-graphs (or birooted
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X-graphs), namely edge foldings (in the sense of Stallings [10]) and expan-
sions. If e1 and e2 are two edges with the same label and the same initial or
terminal vertex, then an edge folding identifies these edges (an edge folding
is called a “determination” in Stephen’s terminology [12, 11]). Clearly, each
edge folding of an X-graph results in another X-graph. If Γ is an X-graph
with two vertices a and b and a path from a to b labeled by one side (say
ui) of one of the defining relations ui = vi of the monoid M , but no path
labeled by the other side, then we expand Γ to create another X-graph ∆ by
adding a new path from a to b labeled by the other side (vi) of the relation.
One of the results of Stephen [12] (Lemma 4.7) is that these processes are
confluent.

The set of birooted X-graphs obtained by applying successive expansions
and edge foldings to a birooted X-graph A = (α,Γ, β) forms a directed
system in the category of birooted X-graphs. The direct limit (colimit)
of this system is an inverse automaton that we will denote by Aω. This
automaton is complete, in the sense that no edge foldings or expansions
may be applied. Of course if finitely many applications of edge foldings and
expansions transform A into a complete automaton B, then B = Aω.

Any automaton A′ obtained from A by applying successive expansions
and edge foldings is called an approximate automaton of Aω.

Theorem 3.2. Let M = Inv〈X : ui = vi, i = 1, . . . n〉 be a finitely presented
inverse monoid. If A is a birooted X-graph (i.e. automaton) accepting the
language L ⊆ (X ∪ X−1)∗, then the language accepted by the direct limit
automaton Aω is Lω = {w ∈ (X ∪X−1)∗ : w ≥ s in M for some s ∈ L}.

Proof. The proof follows by a modification of the proof of Theorem 4.12
of Stephen [11], where it is proved that the Schützenberger automaton SA(s)
of a word s ∈ (X ∪X−1)∗ is the colimit Lin(s)ω, where Lin(s) is the “linear
automaton” of s. See also Theorem 5.10 of [12] for a closely related result.
The basic idea of the proof is that application of an expansion to some
automaton A′ just augments the language L(A′) by words that are equal
in M to words in L(A′), while an edge folding augments this language by
words that are greater than or equal in M to words in L(A′). We provide
some more detail below.

Let Aω = (αω,Γω, βω). If w ∈ L(Aω), then the path labeled by w lifts
to a path labeled by w from α′ to β′ in some approximate automaton A′ =
(α′,Γ′, β′) of Aω by Theorem 2.11 of [11]. This implies that w ∈ L(A′).
But it follows as in the proof of Theorem 5.5 and Lemma 5.6 of [12] that
if A′ is an approximate automaton of Aω, then L ⊆ L(A′) ⊆ Lω. Hence
L(Aω) ⊆ Lω.

Conversely, if w ≥ s for some s ∈ L, then by Theorem 2.1 above, w ∈
L(SA(s)). So w is in the language accepted by some approximate automaton
B′ of SA(s) by Theorem 5.12 of [12]. The automaton B′ is obtained from the
linear automaton of s by a finite number of edge foldings and expansions.
Since s ∈ L = L(A), we may apply the same sequence of edge foldings and
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expansions to A to obtain an approximate automaton A′ of Aω, and hence
w is in the language accepted by this approximate automaton A′. Since
there is a morphism from A′ to Aω by definition of the colimit, it follows
from Lemma 2.4 of [12] that w ∈ L(Aω).

�

We now apply Stephen’s iterative process as described above to construct
the closed inverse submonoid of M generated by a subset Y of (X ∪X−1)∗.
Start with the “flower automaton” F(Y ). This is the birooted X-graph
with one distinguished state 1 designated as initial and terminal state and
a closed path based at 1 labeled by the word y for each y ∈ Y . (This is
a finite automaton if Y is finite of course.) Now successively apply edge
foldings and expansions to F(Y ) to obtain the limit automaton F(Y )ω.

Theorem 3.3. Let M = Inv〈X | ui = vi, i = 1, . . . , n〉 be a finitely pre-
sented inverse monoid, let Y be a subset of (X ∪ X−1)∗, and construct
the inverse automaton F(Y )ω obtained from the flower automaton F(Y )
by iteratively applying the processes of edge foldings and expansions as de-
scribed above. Then the language L(F(Y )ω) accepted by this automaton is
{w ∈ (X ∪ X−1)∗ : w ∈ 〈Y 〉ω}, and F(Y )ω is the ω-coset automaton of
the closed inverse submonoid 〈Y 〉ω of M . Thus the membership problem for
the closed inverse submonoid 〈Y 〉ω is decidable if and only if there is an
algorithm for deciding membership in the language L(F(Y )ω).

Proof. The fact that L(F(Y )ω) = {w ∈ (X ∪ X−1)∗ : w ∈ 〈Y 〉ω} is
immediate from Theorem 3.2 above. Hence the automaton F(Y )ω and the
ω-coset automaton of the closed inverse submonoid 〈Y 〉ω are birooted deter-
ministic X-graphs that accept the same language. But it is routine to see
that any two birooted (connected) deterministic X-graphs that accept the
same language are isomorphic as birooted X-graphs.

�

This theorem shows in particular that the membership problem for the
finitely generated closed inverse submonoid 〈Y 〉ω of M is decidable if the
iterative procedure described above for constructing F(Y )ω terminates after
a finite number of edge foldings and expansions, since in that case F(Y )ω is
a finite inverse automaton.

We remark that if M is the free group FG(X), viewed as an inverse
monoid with presentation FG(X) = Inv〈X | xx−1 = x−1x = 1〉, then
finitely generated closed inverse submonoids of M coincide with finitely gen-
erated subgroups of FG(X), and the construction of F(Y )ω from a finite set
Y of words produces the coset graph of the subgroup. The core of this graph
is, of course, the Stallings graph (automaton) of the corresponding subgroup
[10], obtained by pruning all trees off the coset graph; the reduced words
accepted by the coset automaton (or by the Stallings automaton) coincide
with the reduced words in the subgroup.
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4. Immersions of 2-complexes

Recall the following definition [1] of a finite dimensional CW -complex C:
(1) Start with a discrete set C0 , the 0-cells of C.
(2) Inductively, form the n-skeleton Cn from Cn−1 by attaching n-cells

Cnα via maps ϕα : Sn−1 → Cn−1. This means that Cn is the quotient
space of Cn−1 ∪̇α Dn

α under the identifications x ∼ ϕα(x) for x ∈
∂Dn

α. The cell Cnα is a homeomorphic image of Dn
α− ∂Dn

α under the
quotient map.

(3) Stop the inductive process after a finite number of steps to obtain a
finite dimensional CW -complex C.

The dimension of the complex is the largest dimension of one of its cells.
We denote the set of n-cells of C by C(n). Throughout the remainder of this
paper, by a 2-complex we mean a connected CW -complex of dimension less
than or equal to 2. The 1-skeleton of a 2-complex is an undirected graph,
but it is more convenient for our purposes to regard it as a digraph, with
two oppositely directed edges for each undirected edge.

An immersion between CW -complexes always maps n-cells to n-cells, and
the restriction of an immersion to a subcomplex is also an immersion. It
is easy to see that a cellular map f : C → D is an immersion if and only
if it is locally injective at the 0-cells, that is, each 0-cell v ∈ C(0) has a
neighborhood that is homeomorphic to its image under f . For graphs, this
definiton of immersions is equivalent to Stallings’ definition in [10].

In this section, we classify immersions over 2-complexes using inverse
monoids. Our results extend the results of [5], where the authors classify
immersions over graphs by keeping track of which closed paths lift to closed
paths. This is essentially what we do in this paper, with the added infor-
mation about when 2-cells lift. It will be convenient to label the 1-cells over
some set X ∪X−1 and the 2-cells over some disjoint set P as described be-
low. With every 2-cell, we associate a distinguished vertex (root) and walk
on its boundary, consistent with the labeling. We first describe the process
of choosing a root and boundary walk for 2-cells.

Let C be a 2-complex and let C be a 2-cell of C with the attaching map
ϕC : S1 → C1. Choose a point x0 on the circle S1 in such a way that ϕC maps
x0 to a 0-cell of C. Consider S1 as the interval [0, 1] with its endpoints glued
together and identified with x0. Consider the closed path (in the topological
sense) pC : [0, 1] → C, with pC |(0,1) = ϕC |(0,1), pC(0) = pC(1) = ϕC(x0).
Since the closure of every 2-cell meets only finitely many 0-cells or 1-cells
([1], Proposition A.1), the image of this path corresponds to a closed path
in C1 (in the graph theoretic sense) that we call the boundary walk of C:
we denote it by bw(C). We allow for the possibility that bw(C) might have
no edges. We call the 0-cell ϕC(x0) the base or root of the 2-cell C and of
the closed path bw(C) and denote it by α(C).

Let BX be the bouquet of |X| circles. We build a 2-complex BX,P by
attaching labeled 2-cells to BX with labels coming from a set P (which we
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assume to be disjoint from X ∪X−1), and with a specified boundary walk
for each 2-cell, as described above. The labeling is chosen so that different
2-cells in BX,P have different labels (even if they have the same boundary
in BX). We allow for the possibility that P = ∅ or that X = ∅. Denote the
label of a 2-cell C in BX,P by l(C) ∈ P .

Every 2-complex C admits an immersion f : C → BX,P for some sets X
and P : one could choose X as an index set for the (undirected) edges of C
and P as an index set for the 2-cells for example, but we would normally
choose smaller sets X and P if possible. This mapping f induces a labeling
on C by giving each 1-cell or 2-cell in C the label of its image in BX,P under
f . From now on, by a labeled 2-complex, we mean a labeling induced by an
immersion into some complex BX,P . The 1-skeleton of a 2-complex C labeled
this way is a deterministic X-graph that immerses via the restriction of f
into BX ; 2-cells of C have the same label in P if they map to the same 2-cell
in BX,P .

Example 4.1. Let X = {a, b}, P = {ρ}, and let BX,P be the 2-complex
with one 2-cell C (labeled by ρ) corresponding to the attaching map that
takes S1 to the closed path labeled by aba−1b−1. Then l(bw(C)) = aba−1b−1,
and BX,P is the presentation complex of the free abelian group of rank 2, and
is homeomorphic to the torus. We could have chosen any cyclic conjugate
of aba−1b−1 or its inverse and obtained the same 2-complex, but with a
different boundary walk.

If C,D are 2-complexes and f : C → D an immersion, and D is labeled by
an immersion g : D → BX,P , then g ◦ f : C → BX,P is an immersion, and it
induces a labeling on C that is respected by f ; that is, l(C) = l(f(C)) and
l(e) = l(f(e)) for all 2-cells C and 1-cells e in C. Therefore we may, without
loss of generality, assume that immersions respect the labeling.

Lemma 4.2. Let C,D be labeled 2-complexes and let f : C → D be an im-
mersion that respects the labeling. For an arbitrary 2-cell C of C, f(α(C)) =
α(f(C)) and f(bw(C)) = bw(f(C)). Furthermore, bw(C) is uniquely deter-
mined by f and bw(f(C)).

Proof. Let ϕC : S1 → C and ϕf(C) : S1 → D be the attaching maps
corresponding to C and f(C). If ϕf(C) maps the circle to a point, then so
does ϕC , and our statement trivially holds. For the remainder of the proof,
we suppose that is not the case.

We first prove that f ◦ ϕC = ϕf(C). Consider C as C1 ∪̇ D2
α with iden-

tifications x ∼ ϕα(x) for x ∈ ∂D2
α. Thus the closure of our 2-cell C is a
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quotient of ϕC(S1) ∪̇ D2 by identifying the points x ∼ ϕC(x) for x ∈ ∂D2.
Since f is an immersion, then f |C is a homeomorphism, and so f(C) is
f(ϕC(S1)) ∪̇ D2 with the identifications x ∼ f(ϕC(x)) for x ∈ ∂D2. But
f(C) is the closure of the 2-cell f(C) in D, so it is also ϕf(C)(S

1) ∪̇ D2 with

identifications x ∼ ϕf(C)(x) for x ∈ ∂D2. That is, the points x ∈ ∂D2 and

y ∈ D1 are identified on one hand if and only if y = f(ϕC(x)), on the other
hand, if and only if y = ϕf(C)(x), which yields that f(ϕC(x)) = ϕf(C)(x)

for all x ∈ S1.
Regard S1 as [0, 1] with its endpoints glued together to x0 in such a way

that ϕf(C)(x0) = α(f(C)) ∈ D0. Then for the paths corresponding to the
attaching maps, we have f ◦ pC = pf(C), that is, f(bw(C)) = bw(f(C)).
In particular, α(f(C)) = f(α(C)). Since f respects the labeling, this also
yields l(bw(C)) = l(f(bw(C))) = l(bw(f(C))).

To prove the uniqueness of bw(C), all we need to prove is that ϕC(x0) is
uniquely determined, as the label of the boundary walk of C and the root
α(C) = ϕC(x0) determine bw(C) uniquely. Take a neighborhood N of x0 in
the disk D2. Denote the images of N in C and D by NC and ND respectively
after the identifications x ∼ ϕC(x) and x ∼ ϕf(C)(x) for x ∈ ∂D2. Naturally,
ϕC(x0) ∈ NC and ϕf(C)(x0) ∈ ND. Since f |C is a homeomorphism, it takes
int(NC) to int(ND) homeomorphically, and therefore takes NC to ND. If N
is small enough, there is only one preimage of ϕf(C)(x0) in ND, and that is
ϕC(x0) = α(f(C)).

�

We point out that the second part of the theorem is non-trivial when
l(bw(C)) = xn for some word x, in which case there may be more than one
vertex on bw(C) from which l(bw(C)) can be read.

We have just seen that for an immersion f : C → D and for any 2-cell
C ∈ C2, we have l(bw(C)) = l(bw(f(C))). In particular, when D = BX,P ,
then for any 2-cells C1, C2 ∈ C with l(C1) = l(C2) = ρ, we have l(bw(C1)) =
l(bw(C2)): this common label (called the “boundary label” of ρ) will often
be denoted by bl(ρ). Thus bl(ρ) ∈ (X ∪X−1)∗.

As in covering space theory, paths of a 2-complex C are our tools to classify
immersions over C. The point of the following construction is to generalize
the notion of graph-theoretic paths to 2-complexes.

We associate an edge-labeled graph ΓC with the 2-complex C as follows:

V (ΓC) = C(0)

E(ΓC) = C(1) ∪ {eC : C ∈ C(2)},
where eC denotes a loop based at α(C) and labeled by l(C). Thus the edges

in C(1) are labeled over X ∪ X−1 and the edges of the form eC (for C a
2-cell) are labeled over P . Since an edge labeled by ρ ∈ P is always a loop,
we may identify P with P−1 and regard ΓC as an X ∪ P -graph in the sense
of section 2 of the paper.
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Lemma 4.3. For any labeled complex C, the labeled graph ΓC is determin-
istic.

Proof. Let f : C → BX,P be the immersion inducing the labeling on C.
The subgraph corresponding to the 1-skeleton of C is deterministic, as its
labeling is induced by the immersion f |C1 over BX (see [5]). Therefore we
only need to check if different edges labeled by ρ are based at different ver-
tices, that is, if different 2-cells in C labeled by ρ have different roots. Denote
the set of ρ-labeled 2-cells of C by {Cα : α ∈ A}, and the corresponding at-
taching maps ϕα : S1 → C for α ∈ A. Again, regard S1 as the unit interval
with its endpoints identified with x0, and let N be a neighborhood of x0

in the disk D2. Let Nα denote the image of N induced by the attaching
map ϕα. Since f maps all ρ-labeled 2-cells to one cell, f(Nα) = f(Nα′) for
all α, α′ ∈ A and for any neighborhood N . Since f is locally injective, this
implies that the f(Nα) (α ∈ A) are pairwise disjoint, therefore the roots
ϕα(x0) of the 2-cells are all different. �

The paths in the graph ΓC will play the role of paths in C in our paper.
One can think of these paths as paths in C1 (in the graph-theoretic sense)
extended with the possibility of “stepping” on a 2-cell at its basepoint, thus
including it in the path.

Lemma 4.4. For two labeled 2-complexes C and D there exists an immersion
C → D (that respects the labeling) if and only if there is an immersion
ΓC → ΓD (that respects the labeling).

Proof. Let f : C → D be an immersion that respects the labeling. Re-
garding C1 as a subgraph of ΓC , we define g : ΓC → ΓD to be f on C1, and
for an edge eC corresponding to a 2-cell C, let g(eC) = ef(C). It is easy to
see that if f is locally injective at the vertices, so is g, hence an immersion.
For the converse, suppose g : ΓC → ΓD is an immersion that respects the
labeling. Define f : C → D to be g on C1, and for a 2-cell C of C, let f(C)
be the 2-cell for which g(eC) = ef(C) holds. Note that if g is an immersion,
then so is f |C1 . Suppose that f |C1 is an immersion, but f is not. Then there
is a vertex v with two 2-cells C1 and C2 with v ∈ ∂C1∩∂C2 that f identifies
around v, that is, for any neighborhood N of v, f(C1 ∩ N) = f(C2 ∩ N).
Since f is locally injective on to the 1-skeleton — in paticular, on bw(C1) and
bw(C2) —, this can only happen if C1 and C2 have the same boundary walk,
so eC1 and eC2 are based at the same vertex. But since g(eC1) = g(eC2),
that contradicts our assumption. Hence f is an immersion, and it respects
the labeling.

�

We are now ready to define the inverse monoid which will play the role
of the fundamental group. Let C be a labeled 2-complex with the edges
(1-cells) labeled over the set X ∪X−1 and the 2-cells labeled over the set P ,
consistent with an immersion over some complex BX,P . We define a partial
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action of the inverse monoid

MX,P = Inv
〈
X ∪ P | ρ2 = ρ, ρ ≤ bl(ρ) : ρ ∈ P

〉
on the vertices (0-cells) of C. For x ∈ X∪X−1, let vx = w if there is an edge
labeled x from v to w, and vx is undefined otherwise. For ρ ∈ P , let vρ = v
if there is a 2-cell labeled ρ based at v, and vρ is undefined otherwise. This
action extends to an action of FIM(X) in a natural way. Since the action
of ρ is always idempotent, and is always a restriction of the action of bl(ρ),
it also extends to an action of MX,P . Note that the action of MX,P on the
vertices of C corresponds to the usual partial action induced by edges in ΓC .
We will denote the stabilizer of a vertex v ∈ C0 under this action by MX,P

by Stab(C, v).

Proposition 4.5. The inverse monoid MX,P and its action on C0 do not
depend on the boundary walks and roots chosen for the 2-cells.

Proof. Suppose we chose different roots and boundary walks for the 2-
cells of C, and let bl′(ρ) denote the new boundary label corresponding to the
2-cells labeleld by ρ. The inverse monoid corresponding to these boundary
walks is M ′X,P = 〈X,P | ρ2 = ρ, ρ ≤ bl′(ρ)〉. The word bl′(ρ) is a cyclic

conjugate of bl(ρ) or (bl(ρ))−1. Since ρ ≤ bl(ρ) holds if and only if ρ ≤
(bl(ρ))−1, reversing the boundary walk does not effect MX,P , so we may
assume that bl′(ρ) is a cyclic conjugate of bl(ρ). Suppose bl(ρ) = pρqρ,
bl′(ρ) = qρpρ. Note that pρρp

−1
ρ is an idempotent of M ′X,P , since ρ is an

idempotent of M ′X,P . Also, since ρ ≤ qρpρ in M ′X,P , it follows that pρρp
−1
ρ =

pρρqρpρp
−1
ρ ≤ pρρqρ ≤ pρqρ in M ′X,P . Hence the map x 7→ x, ρ 7→ pρρp

−1
ρ ,

where x ∈ X, ρ ∈ P , extends to a well-defined morphism ϕ : MX,P →M ′X,P .

Also, for ρ ∈M ′X,P , p−1
ρ (pρρp

−1
ρ )pρ = ρ, so ϕ is surjective; and it is injective

since it is injective on the generators of MX,P , so it is an isomorphism.
Moreover, denoting the maps from MX,P and M ′X,P to SIM(C0) corre-

sponding to their actions on the vertices by ψ and ψ′ respectively, the fol-
lowing diagram commutes:s s

s
MX,P M ′X,P

SIM(C0)

ϕ

ψ ψ′
@
@
@
@@R

�
�

�
��	

-

The commutativity of the diagram follows directly from the facts that
ϕ is the identity on X, and that for ρ ∈ MX,P , the action of ϕ(ρ) on the
vertices is the same as that of ρ. �

We now define an inverse category of paths on ΓC . A category C is called
inverse if for every morphism p in C there is a unique inverse morphism p−1
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such that p = pp−1p and p−1 = p−1pp−1. The loop monoids L(C, v) of an
inverse category, that is, the set of all morphisms from v to v, where v is an
arbitrary vertex, form an inverse monoid. The free inverse category FIC(Γ)
on a graph Γ is the free category on Γ factored by the congruence induced by
relations of the form p = pp−1p, p−1 = p−1pp−1, and pp−1qq−1 = qq−1pp−1

for all paths p, q in Γ with α(p) = α(q).
Now let ∼ be the congruence on the free category on ΓC generated by the

relations defining FIC(ΓC) and the ones of the form p2 = p and p = pq, where
p, q are coterminal paths with l(p) ∈ P and l(q) = bl(l(p)). The inverse
category IC(C) corresponding to the 2-complex C is obtained by factoring
the free category on ΓC by ∼. The loop monoids L(IC(C), v) consist of ∼-
classes of (v, v)-paths, these monoids play the role of the fundamental group,
and IC(C) plays the role of the fundamental groupoid in the classification of
immersions. We will denote L(IC(C), v) by L(C, v) for brevity.

Proposition 4.6. For any vertex v in a connected 2-complex C, the greatest
group homomorphic image of L(C, v) is the fundamental group of C.

Proof. The proof follows from the fact that the fundamental groupoid
of C is IC(C) factored by the congruence generated by relations of the form
xx−1 = idα(x) for any morphism x (which implies bw(C) = idα(C) for any
2-cell C). Hence L(C, v)/σ = π1(C). �

Note that the relations of ∼ are closely related to the ones defining MX,P ,
that is, two coterminal paths p, q are in the same ∼-class if and only if
l(p) = l(q) in MX,P . This enables us to identify morphisms from some
vertex v with their (common) label in MX,P . Using this identification, we
have L(C, v) = Stab(C, v) for any vertex v. The following proposition is a
direct consequence of our previous observation and Proposition 3.1.

Proposition 4.7. Each loop monoid of IC(C) is a closed inverse submonoid
of MX,P .

Given a closed inverse submonoid H of MX,P , we construct a complex
with H as a loop monoid using the ω-coset graph ΓH of H. First note that
the action of MX,P by right multiplication on the right ω-cosets of H is
by definition the same as the action on the vertices of ΓH induced by the
edges. Suppose there is a closed path based at H labeled by xρy, where
ρ ∈ P, x, y ∈ (X ∪ X−1 ∪ P )∗. Then xρy ∈ H, and since H is closed and
xρy ≤ xy in MX,P , we also have xy ∈ H, hence xy also labels a closed path
based at H. This implies that ρ always labels a loop in the coset graph.
Similarly, xρy ≤ x(bl(ρ))y, so x(bl(ρ))y labels a closed path based at H.
Therefore whenever there is a loop in the coset graph labeled ρ based at v,
there is a closed path labeled bl(ρ) based at v.

The labeled coset complex CH of H is defined the following way:

C(0)
H = V (ΓH),

C(1)
H = {e ∈ E(ΓH) : l(e) ∈ X ∪X−1},
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C(2)
H = {Ce ∈ E(ΓH) : l(e) ∈ P},

where the boundary walk of a 2-cell Ce is the closed path rooted at α(e)
and labeled by bl(ρ) where ρ = l(e). In short, we take the graph ΓH , and
substitute edges labeled by P with 2-cells in the natural way. Note that the
labeling of CH corresponds to the immersion over the 2-complex BX,P , in
which the attaching map of a 2-cell labeled by ρ is given by bl(ρ).

The following proposition gives the relationships between the complexes
associated with the coset graphs and graphs associated with complexes.

Proposition 4.8. Let C be a labeled 2-complex. If H is a closed inverse sub-
monoid of MX,P for which ΓH ∼= ΓC, then CH ∼= C. There is an isomorphism
ϕ : ΓH → ΓC if and only if H = Stab(C, ϕ(H)).

Proof. The first statement follows directly from the definitions of CH
and ΓC . For the second statement, suppose H = Stab(C, v) for some v ∈ C0.
First we observe that the set of words labeling closed paths from Stab(C, v)
to Stab(C, v) in ΓStab(C,v) is the same as the set of words labeling closed
paths from v to v in ΓC . Indeed, p is a closed (v, v)-path in ΓC if and only if
l(p) ∈ Stab(C, v), which is if and only if p is a closed path from Stab(C, v) to
Stab(C, v) in ΓStab(C,v). We now define an isomorphism ϕ : ΓStab(C,v) → ΓC
by Stab(C, v) 7→ v, and all (Stab(C, v), Stab(C, v))-paths map to the (unique)
(v, v)-path with the same label. It is routine to verify that this is a graph
isomorphism.

Now for the converse, suppose H 6= Stab(C, v) for any vertex v. Then
the set of labels of closed (H,H)-paths in ΓH and the ones of closed (v, v)
paths in ΓC are different, for all v ∈ V (ΓC), hence the two graphs cannot be
isomorphic. �

Let H,K be two closed inverse submonoids of MX,P . Define H to be
conjugate to K, denoted by H ≈ K, if there exists m ∈ MX,P such that
m−1Hm ⊆ K and mKm−1 ⊆ H. It is easy to see that ≈ is an equivalence
relation (called “conjugation”) on the set of closed inverse submonoids of
MX,P . The equivalence classes of ≈ are called conjugacy classes. We re-
mark that conjugate closed inverse submonoids of MX,P are not necessarily
isomorphic (see [5]).

We call the two (labeled) immersions f1 : C1 → D and f2 : C2 → D equiva-
lent if there is a labeled isomorphism ϕ : C1 → C2 which makes the following
diagram commute: s s

s
C1 C2

D

ϕ

f1 f2

@
@
@
@@R

�
�
�

��	

-
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The following two theorems state the main result of the paper. They are
generalizations of Theorem 4.4 and 4.5 in [5], and most of the proofs are
analogous to those. When the 2-complexes contain no 2-cells (that is, they
are graphs), these theorems reduce to Theorem 4.4 and 4.5 in [5].

Theorem 4.9. Let C be a 2-complex, with edges labeled over the set X∪X−1,
2-cells labeled over the set P , consistent with an immersion over some com-
plex BX,P . Then each loop monoid is a closed inverse submonoid of MX,P ,
and the set of all loop monoids L(C, v) for v ∈ C0 forms a conjugacy class of
the set of closed inverse submonoids of MX,P . Conversely, if H is a closed
inverse submonoid of MX,P , then there is a 2-complex C and an immersion
f : C → BX,P such that H is a loop monoid of IC(C), furthermore, C is
unique (up to isomorphism), and f is unique (up to equivalence).

Proof. We saw in Proposition 4.7 that loop monoids are closed. Take
two loop monoids L(C, v1) and L(C, v2), and let m ∈ (X ∪X−1 ∪ P )∗ label
a (v1, v2)-path in C. If n ∈ L(C, v2), then n labels a (v2, v2)-path, and
mnm−1 labels a (v1, v1)-path, somL(C, v2)m−1 ⊆ L(C, v1). Sincem−1 labels
a (v2, v1)-path, we get m−1L(C, v1)m ⊆ L(C, v2) similarly. Now suppose
H ≈ L(C, v1). Then there exists some m ∈MX,P such that m−1L(C, v1)m =
H and mHm−1 = L(C, v1), in particular, mm−1 ∈ L(C, v1). Therefore,
regarding m as an element of (X∪X−1∪P )∗, it labels a path from v1 to some
vertex v2. If h ∈ H (and again regard h as an element of (X ∪X−1 ∪ P )∗),
then mhm−1 labels a (v1, v1)-path, hence h labels a path form v2 to v2.
Therefore H ⊆ L(C, v2). On the other hand, if n ∈ L(C, v2), then mnm−1 ∈
L(C, v1), and m−1mnm−1m ⊆ H. Since H is closed and m−1mnm−1m ≤ n,
this yields n ∈ H, therefore H = L(C, v2). This proves that the set of all
loop monoids L(C, v) for v ∈ C0 form a conjugacy class of the set of closed
inverse submonoids of MX,P .

Now suppose that H is a closed inverse submonoid of MX,P , and build the
coset complex CH . There is a natural immersion f : CH → BX,P , namely the
one sending all edges and 2-cells to the ones corresponding to their labels.

It follows from Proposition 4.8 that the graph ΓC is unique, and it uniquely
determines C. The uniqueness of f follows from the fact that f respects the
labeling.

�

Theorem 4.10. Let f : C2 → C1 be an immersion over C1, where C1 and
C2 are 2-complexes with edges labeled over the set X ∪X−1, 2-cells labeled
over the set P consistent with an immersion over some complex BX,P , and
f respects the labeling. If vi ∈ C0

i , i = 1, 2, such that f(v2) = v1, then f
induces an embedding of L(C2, v2) into L(C1, v1). Conversely, let C1 be a
labeled 2-complex and let H be a closed inverse submonoid of MX,P such
that H ⊆ L(C1, v1) for some v1 ∈ C0

1 . Then there exists a 2-complex C2

and an immersion f : C2 → C1 and a vertex v2 ∈ C0
2 such that f(v2) = v1

and L(C2, v2) = H. Furthermore, C2 is unique (up to isomorphism), and f
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is unique (up to equivalence). If H,K are two closed inverse submonoids
of MX,P with H,K ⊆ L(C1, v1), then the corresponding immersions are
equivalent if and only if H ≈ K in MX,P .

Proof. Suppose first that f(v2) = v1. The assertion that L(C2, v2) ⊆
L(C1, v1) follows easily from the fact that if p is a closed path in C2 based at
v2, then f(p) is a closed path in C1 based at f(v2) = v1 and l(p) = l(f(p)).
For the converse, suppose H is a closed inverse submonoid of MX,P such that
H ⊆ L(C1, v1), and construct the coset complex CH and the coset graph ΓH ,
and let Γ1 denote ΓC1 . Put C2 = CH , and v2 = H We saw in Proposition 4.8
that H = L(CH , H). We construct an immersion g : ΓH → Γ1 that respects
the labeling. Let f(H) = v1, and note that if (Hm)ω is a right ω-coset, then
mm−1 ∈ H ⊆ L(C1, v1), so m labels a path starting at v1 in Γ1. Now we
define g to take all paths starting at H to the (unique) path with the same
label, starting at v1. Then g is locally injective at the vertices, hence it is
an immersion, and it respects the labeling by definition. By Lemma 4.4, g
yields an immersion f : CH → C1 that commutes with the labeling.

The uniqueness of f and C2 again follow from the uniqueness of ΓC2 by
Proposition 4.8, and from the fact that f respects the labeling. For the
last statement, recall that according to Lemma 4.2, the immersion f and
the complex C2 determine the boundary walks and therefore the graph ΓC2
uniquely, that is, ΓC2 and the pair (f, C2) are in one-one correspondence.
The fact ΓH ∼= ΓH′ if and only if H and H ′ are conjugate completes our
proof. �

We close this section with some observations about the inverse monoids
MX,P and their closed inverse submonoids. In particular, we give an algo-
rithm to construct CH for a finitely generated closed inverse submonoid H
of MX,P if X and P are finite.

Theorem 4.11. (a) If X and P are finite sets, then the Schützenberger
graphs of MX,P are finite (and effectively constructible) and so the word
problem for MX,P is decidable.

(b) If X and P are finite sets and H is a finitely generated closed inverse
submonoid of MX,P , then the associated 2-complex C is finite and effectively
constructible.

Proof. (a) If w is a word in (X∪X−1)∗ then no defining relation for MX,P

applies, so the corresponding Schützenberger graph SΓ(w) is the Munn tree
of w (see [7, 3]), so it is finite and effectively constructible. On the other
hand, if w is a word in (X ∪X−1 ∪P )∗ that does contain some letter ρ ∈ P ,
then any application of the relation ρ2 = ρ turns the edge labeled by ρ
into a loop. Any application of the relation ρ ≤ bl(ρ) (i.e. ρ = ρbl(ρ)) just
introduces a new path labeled by bl(ρ) to the approximate automaton. Once
the relations ρ = ρ2 and ρ ≤ bl(ρ) have been applied, this occurrence of ρ
is not involved in any further application of relations involved in iteratively
constructing SΓ(w). As the automaton we started out with was finite, this
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iterative process (as outlined in Section 2 above - Theorem 4.12 of [12]) must
terminate in a finite number of steps and the Schützenberger automaton
SA(w) is finite and effectively constructible.

(b) The proof of part (b) of the theorem is similar. If we start with the
flower automaton F(Y ) of a finite subset Y ⊂ (X∪X−1∪P )∗ and iteratively
apply edge foldings and expansions corresponding to the defining relations
of MX,P , this process terminates in a finite number of steps, providing an
effective construction of the ω-coset automaton of the corresponding closed
inverse submonoid 〈Y 〉ω of MX,P by Theorem 3.3. The result then follows
from Theorem 4.8 (and the fact that the associated complex C is the coset
complex of 〈Y 〉ω).

�

5. Examples and special cases

Recall that a covering space of a space X is a space X̃ together with a
map f : X̃ → X called a covering map, satisfying the following condition:
there exists an open cover Uα of X such that for each α, f−1(Uα) is a disjoint

union of open sets in X̃, each of which is mapped homeomorphically onto Uα
by f . It is easy to see that a cellular map f : C → D between CW-complexes
is a covering map if and only if each 0-cell v ∈ C0 has a neighborhood Uv
that is homeomorphic to a neighborhood Uf(v) of f(v). This happens if
and only if f is an immersion for which the neighborhoods of 0-cells “lift
completely”, that is, whenever v is on the boundary of a cell C in D, then
each 0-cell in f−1(v) is on the boundary of a cell in f−1(C).

The following theorem characterizes those immersions between 2-complexes
which are also covering maps, in the sense of the previous theorem.

Theorem 5.1. Let C,D be 2-complexes labeled by an immersion over some
complex BX,P , let f : C → D be an immersion that respects the labeling, and
let v ∈ C0 be an arbitrary 0-cell. Then f is a covering map if and only if
L(C, v) is a full closed inverse submonoid of L(D, f(v)), that is, it contains
all idempotents of L(D, f(v)).

Proof. First, suppose that f is a covering, and suppose there is an idem-
potent e ∈ L(D, f(v)). Regarding e as an element of (X ∪X−1 ∪ P )∗, the
closed path in D labeled by e, starting at f(v) lifts to a path labeled by e,
starting at v in C, because f is a covering. Since e is idempotent, the action
of any path labeled by e on C0 is the restriction of the identity, therefore a
path labeled by e must always be closed. This yields e ∈ L(C, v).

For the converse, suppose L(C, v) is a full closed inverse submonoid of
L(D, f(v)). Suppose there is an edge starting at f(v), labeled by s in D.
Then ss−1 ∈ L(D, f(v)), and since ss−1 is idempotent, that implies ss−1 ∈
L(C, v). Which yields that there is an edge labeled by s, starting form v in
L(C, v), that is, the neighborhood of f(v) lifts completely. By induction on
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distance from v, we obtain that all 0-cells are in the image of f , therefore
their neighborhoods lift completely.

�

It is easy to see that L(C, v) is a full closed inverse submonoid of L(D, f(v))
if and only if whenever m ∈ L(C, v) and n ∈ L(D, f(v)) such that m ≥ n
holds in L(D, f(v)), then n ∈ L(C, v). Therefore combining the result above
with Theorem 4.10, we obtain that an immersion f : C → D is a covering
if and only if whenever an element m ∈ L(D, f(v)) is comparable with
n ∈ L(C, v) in the natural partial order, we have n ∈ L(D, f(v)).

We briefly compare our results with the theorem classifying covers via
subgroups of the fundamental group when applied to 2-complexes. Recall
(Proposition 4.6) that the fundamental group π1(C) of a (connected) 2-
complex C is the greatest group homomorphic image of any loop monoid of
C, denoted by L(C, v)/σ. The greatest group homomorphic image of MX,P ,
denoted by GX,P , is the group with the same presentation as MX,P . Since
in groups, ρ = ρ2 implies ρ = 1, and ρ ≤ bl(ρ) implies ρ = bl(ρ) = 1, that is
just

GX,P = Gp〈X | bl(ρ) = 1〉.
This is the fundamental group of the corresponding complex BX,P , and the
fundamental group of a complex immersing into BX,P is a subgroup of GX,P .

Naturally, the fundamental groups of 2-complexes immersing into a 2-
complex C are always subgroups of π1(C), but distinct immersing 2-complexes
may give rise to the same subgroup of π1(C) — for example, any immersing
tree has the trivial group as its fundamental group. When restricting to
covers, however, it is well-known that the fundamental groups of the cov-
ering spaces are in one-to-one correspondence with the conjugacy classes of
subgroups of the fundamental group of the base space. Therefore the loop
monoids of different covering spaces all have different greatest group homo-
morphic images. Suppose f : C → D is a covering that respects the labeling,
and let v ∈ C0. Let σ\ : L(D, f(v))→ π1(D) be the natural homomorphism
corresponding to the congruence σ. Recall ([3]) that σ is generated by pairs
(m,n) such thatm ≤ n. Therefore by Theorem 5.1 (and the observation that
followed), it is clear that L(C, v) is the union of some σ-classes of L(D, f(v)),
namely it is the full inverse image of π1(C) under σ\.

In [13], Williamson uses similar methods to classify immersions over a
slightly restricted class of complexes with one 0-cell. The notion of immer-
sion f : C → D in [13] has the additional property that every 0-cell in the
fiber f−1(v0) of a 0-cell v0 on the boundary of a 2-cell of D is required to be
part of the boundary of some 2-cell of C.

Example 5.2. Let X = {a}, P = {ρ}, and C be the labeled 2-complex with
one loop labeled by a and one 2-cell attached to the path a2. (This complex
is homeomorphic to the projective plane.) Then its loop monoid is MX,P =
Inv〈a, ρ | ρ2 = ρ, ρ ≤ a2〉. Here is a list of all 2-complexes immersing into C,
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and a representative from the corresponding conjugacy class of closed inverse
submonoids of MX,P . (The basepoint of the representative is denoted by a
larger dot when necessary.) The complex that immerses into the projective
plane uniquely determines the immersion (up to equivalence).

〈a, ρ〉ω, the projective plane

〈ρ〉ω

〈ρ, aρa〉ω, the universal cover

〈a〉ω

〈an〉ω, n ∈ N, (n = 5)

〈1〉ω

〈ana−n〉ω, n ∈ N, (n = 4)

〈ana−n : n ∈ N〉ω

〈a−nan : n ∈ N〉ω

〈ana−n : n ∈ Z〉ω
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Example 5.3. Let X = {a, b}, P = {ρ}, and let D be the labeled 2-complex
with two loops labeled by a and b, and one 2-cell attached to the path b.
Then its loop monoid is MX,P = Inv〈a, b, ρ | ρ2 = ρ, ρ ≤ b〉. Here are some
examples of 2-complexes immersing into D, and a representative from the
corresponding conjugacy class of closed inverse submonoids of MX,P .

〈a, b, ρ〉ω

〈a, b〉ω

〈anba−n : n ∈ Z〉ω

〈anρa−n : n ∈ Z〉ω, the univer-
sal cover

〈ak, anρa−n : n ∈ {1, . . . , k}〉ω
k ∈ N, (k = 4)

〈(ab)nab2a−1(ab)−n : n ∈ N〉ω
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{ww−1 : w ∈ {a, b}∗}

〈a4, ρ, a2b2a−2, abnb−na−1 :
n ∈ Z〉ω

〈ρ, aρa−1, a2ba, a3ρa2〉ω

Example 5.4. Regard the torus as the 2-complex seen in Example 4.1. Its
loop monoid is MX,P = 〈a, b, ρ | ρ2 = ρ, ρ ≤ aba−1b−1〉. We construct the
unique complex C = CH with a loop monoid H = 〈a−1b−1ab, abρa−1〉ω ≤
MX,P using the method described in Theorem 3.3. Recall that the inequality
ρ ≤ aba−1b−1 can be written as ρ = ρaba−1b−1.

The flower automaton:
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Folding a, then ex-
panding by ρ2:

Folding ρ, then ex-
panding by ρaba−1b−1,
and folding ρ right
away:

Folding b and then a,
the resulting graph is
complete, thus it is
ΓH :

The coset complex CH :
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