760 research outputs found

    Spectral universality of strong shocks accelerating charged particles

    Get PDF
    As a rule, the shock compression controls the spectrum of diffusively accelerated particles. We argue that this is not so if the backreaction of these particles on the shock structure is significant. We present a self-similar solution in which the accelerated particles change the flow structure near the shock so strongly that the total shock compression may become arbitrarily large. Despite this, the energy spectrum behind the shock is close to E^{-3/2} independently of anything at all.Comment: Submitted to ApJL, 4 pages, 1 figure, uses revtex and boxedep

    Probing Nearby CR Accelerators and ISM Turbulence with Milagro Hot Spots

    Full text link
    Both the acceleration of cosmic rays (CR) in supernova remnant shocks and their subsequent propagation through the random magnetic field of the Galaxy deem to result in an almost isotropic CR spectrum. Yet the MILAGRO TeV observatory discovered a sharp (10)\sim10^{\circ}) arrival anisotropy of CR nuclei. We suggest a mechanism for producing a weak and narrow CR beam which operates en route to the observer. The key assumption is that CRs are scattered by a strongly anisotropic Alfven wave spectrum formed by the turbulent cascade across the local field direction. The strongest pitch-angle scattering occurs for particles moving almost precisely along the field line. Partly because this direction is also the direction of minimum of the large scale CR angular distribution, the enhanced scattering results in a weak but narrow particle excess. The width, the fractional excess and the maximum momentum of the beam are calculated from a systematic transport theory depending on a single scale ll which can be associated with the longest Alfven wave, efficiently scattering the beam. The best match to all the three characteristics of the beam is achieved at l1l\sim1pc. The distance to a possible source of the beam is estimated to be within a few 100pc. Possible approaches to determination of the scale ll from the characteristics of the source are discussed. Alternative scenarios of drawing the beam from the galactic CR background are considered. The beam related large scale anisotropic CR component is found to be energy independent which is also consistent with the observations.Comment: 2 figures, ApJ accepted version2 minor changes and correction

    On the mechanism for breaks in the cosmic ray spectrum

    Full text link
    The proof of cosmic ray (CR) origin in supernova remnants (SNR) must hinge on full consistency of the CR acceleration theory with the observations; direct proof is impossible because of the orbit stochasticity of CR particles. Recent observations of a number of galactic SNR strongly support the SNR-CR connection in general and the Fermi mechanism of CR acceleration, in particular. However, many SNR expand into weakly ionized dense gases, and so a significant revision of the mechanism is required to fit the data. We argue that strong ion-neutral collisions in the remnant surrounding lead to the steepening of the energy spectrum of accelerated particles by \emph{exactly one power}. The spectral break is caused by a partial evanescence of Alfven waves that confine particles to the accelerator. The gamma-ray spectrum generated in collisions of the accelerated protons with the ambient gas is also calculated. Using the recent Fermi spacecraft observation of the SNR W44 as an example, we demonstrate that the parent proton spectrum is a classical test particle power law E2\propto E^{-2}, steepening to E3E^{-3} at Ebr7GeVE_{br}\approx7GeV.Comment: APS talk to appear in PoP, 4 figure

    On the Structure and Scale of Cosmic Ray Modified Shocks

    Full text link
    Strong astrophysical shocks, diffusively accelerating cosmic rays (CR) ought to develop CR precursors. The length of such precursor LpL_{p} is believed to be set by the ratio of the CR mean free path λ\lambda to the shock speed, i.e., Lpcλ/Vshcrg/VshL_{p}\sim c\lambda/V_{sh}\sim cr_{g}/V_{sh}, which is formally independent of the CR pressure PcP_{c}. However, the X-ray observations of supernova remnant shocks suggest that the precursor scale may be significantly shorter than LpL_{p} which would question the above estimate unless the magnetic field is strongly amplified and the gyroradius rgr_{g} is strongly reduced over a short (unresolved) spatial scale. We argue that while the CR pressure builds up ahead of the shock, the acceleration enters into a strongly nonlinear phase in which an acoustic instability, driven by the CR pressure gradient, dominates other instabilities (at least in the case of low β\beta plasma). In this regime the precursor steepens into a strongly nonlinear front whose size scales with \emph{the CR pressure}as LfLp(Ls/Lp)2(Pc/Pg)2L_{f}\sim L_{p}\cdot(L_{s}/L_{p})^{2}(P_{c}/P_{g})^{2}, where LsL_{s} is the scale of the developed acoustic turbulence, and Pc/PgP_{c}/P_{g} is the ratio of CR to gas pressure. Since LsLpL_{s}\ll L_{p}, the precursor scale reduction may be strong in the case of even a moderate gas heating by the CRs through the acoustic and (possibly also) the other instabilities driven by the CRs.Comment: EPS 2010 paper, to appear in PPC
    corecore