790 research outputs found
The role of truck wash practices in dissemination of Salmonella and Campylobacter in commercial swine production
This study investigated the sources of two foodborne pathogens, Salmonella and Campylobacter in a commercial swine production system. Pathogens were characterized using conventional culture and isolation techniques and antibiograms
GCS programmer's manual
A variety of instructions to be used in the development of implementations of software for the Guidance and Control Software (GCS) project is described. This document fulfills the Radio Technical Commission for Aeronautics RTCA/DO-178A guidelines, 'Software Considerations in Airborne Systems and Equipment Certification' requirements for document No. 4, which specifies the information necessary for understanding and programming the host computer, and document No. 12, which specifies the software design and implementation standards that are applicable to the software development and testing process. Information on the following subjects is contained: activity recording, communication protocol, coding standards, change management, error handling, design standards, problem reporting, module testing logs, documentation formats, accuracy requirements, and programmer responsibilities
Electric-field-induced displacement of a charged spherical colloid embedded in an elastic Brinkman medium
When an electric field is applied to an electrolyte-saturated polymer gel
embedded with charged colloidal particles, the force that must be exerted by
the hydrogel on each particle reflects a delicate balance of electrical,
hydrodynamic and elastic stresses. This paper examines the displacement of a
single charged spherical inclusion embedded in an uncharged hydrogel. We
present numerically exact solutions of coupled electrokinetic transport and
elastic-deformation equations, where the gel is treated as an incompressible,
elastic Brinkman medium. This model problem demonstrates how the displacement
depends on the particle size and charge, the electrolyte ionic strength, and
Young's modulus of the polymer skeleton. The numerics are verified, in part,
with an analytical (boundary-layer) theory valid when the Debye length is much
smaller than the particle radius. Further, we identify a close connection
between the displacement when a colloid is immobilized in a gel and its
velocity when dispersed in a Newtonian electrolyte. Finally, we describe an
experiment where nanometer-scale displacements might be accurately measured
using back-focal-plane interferometry. The purpose of such an experiment is to
probe physicochemical and rheological characteristics of hydrogel composites,
possibly during gelation
A Geophysical Atlas for Interpretation of Satellite-derived Data
A compilation of maps of global geophysical and geological data plotted on a common scale and projection is presented. The maps include satellite gravity, magnetic, seismic, volcanic, tectonic activity, and mantle velocity anomaly data. The Bibliographic references for all maps are included
VEGF and the Fab fragment of a humanized neutralizing antibody: crystal structure of the complex at 2.4 ĂĄ resolution and mutational analysis of the interface
AbstractBackground: Vascular endothelial growth factor (VEGF) is a highly specific angiogenic growth factor; anti-angiogenic treatment through inhibition of receptor activation by VEGF might have important therapeutic applications in diseases such as diabetic retinopathy and cancer. A neutralizing anti-VEGF antibody shown to suppress tumor growth in an in vivo murine model has been used as the basis for production of a humanized version.Results: We present the crystal structure of the complex between VEGF and the Fab fragment of this humanized antibody, as well as a comprehensive alanine-scanning analysis of the contact residues on both sides of the interface. Although the VEGF residues critical for antibody binding are distinct from those important for high-affinity receptor binding, they occupy a common region on VEGF, demonstrating that the neutralizing effect of antibody binding results from steric blocking of VEGF–receptor interactions. Of the residues buried in the VEGF–Fab interface, only a small number are critical for high-affinity binding; the essential VEGF residues interact with those of the Fab fragment, generating a remarkable functional complementarity at the interface.Conclusions: Our findings suggest that the character of antigen–antibody interfaces is similar to that of other protein–protein interfaces, such as ligand–receptor interactions; in the case of VEGF, the principal difference is that the residues essential for binding to the Fab fragment are concentrated in one continuous segment of polypeptide chain, whereas those essential for binding to the receptor are distributed over four different segments and span across the dimer interface
Mannan Molecular Substructures Control Nanoscale Glucan Exposure in Candida
Cell wall mannans of Candida albicans mask β-(1,3)-glucan from recognition by Dectin-1, contributing to innate immune evasion. Glucan exposures are predominantly single receptor-ligand interaction sites of nanoscale dimensions. Candida species vary in basal glucan exposure and molecular complexity of mannans. We used super-resolution fluorescence imaging and a series of protein mannosylation mutants in C. albicans and C. glabrata to investigate the role of specific N-mannan features in regulating the nanoscale geometry of glucan exposure. Decreasing acid labile mannan abundance and α-(1,6)-mannan backbone length correlated most strongly with increased density and nanoscopic size of glucan exposures in C. albicans and C. glabrata, respectively. Additionally, a C. albicans clinical isolate with high glucan exposure produced similarly perturbed N-mannan structures and elevated glucan exposure geometry. Thus, acid labile mannan structure influences the nanoscale features of glucan exposure, impacting the nature of the pathogenic surface that triggers immunoreceptor engagement, aggregation, and signaling. Graus et al. find that N-mannan structural features regulated by Candida mannosyltransfersases control glucan exposure. Loss of mannan increased the frequency and size of glucan exposures and changed multivalent receptor engagement. Changes to mannan structure in a bloodstream isolate are associated with elevated glucan exposure at the nanoscale
Development of genomic resources for the prairie vole (Microtus ochrogaster): construction of a BAC library and vole-mouse comparative cytogenetic map
<p>Abstract</p> <p>Background</p> <p>The prairie vole (<it>Microtus ochrogaster</it>) is a premier animal model for understanding the genetic and neurological basis of social behaviors. Unlike other biomedical models, prairie voles display a rich repertoire of social behaviors including the formation of long-term pair bonds and biparental care. However, due to a lack of genomic resources for this species, studies have been limited to a handful of candidate genes. To provide a substrate for future development of genomic resources for this unique model organism, we report the construction and characterization of a bacterial artificial chromosome (BAC) library from a single male prairie vole and a prairie vole-mouse (<it>Mus musculus</it>) comparative cytogenetic map.</p> <p>Results</p> <p>We constructed a prairie vole BAC library (CHORI-232) consisting of 194,267 recombinant clones with an average insert size of 139 kb. Hybridization-based screening of the gridded library at 19 loci established that the library has an average depth of coverage of ~10Ă—. To obtain a small-scale sampling of the prairie vole genome, we generated 3884 BAC end-sequences totaling ~2.8 Mb. One-third of these BAC-end sequences could be mapped to unique locations in the mouse genome, thereby anchoring 1003 prairie vole BAC clones to an orthologous position in the mouse genome. Fluorescence in situ hybridization (FISH) mapping of 62 prairie vole clones with BAC-end sequences mapping to orthologous positions in the mouse genome was used to develop a first-generation genome-wide prairie vole-mouse comparative cytogenetic map. While conserved synteny was observed between this pair of rodent genomes, rearrangements between the prairie vole and mouse genomes were detected, including a minimum of five inversions and 16 inter-chromosomal rearrangements.</p> <p>Conclusions</p> <p>The construction of the prairie vole BAC library and the vole-mouse comparative cytogenetic map represent the first genome-wide modern genomic resources developed for this species. The BAC library will support future genomic, genetic and molecular characterization of this genome and species, and the isolation of clones of high interest to the vole research community will allow for immediate characterization of the regulatory and coding sequences of genes known to play important roles in social behaviors. In addition, these resources provide an excellent platform for future higher resolution cytogenetic mapping and full genome sequencing.</p
Laparoscopic sacrocolpopexy with bone anchor fixation: short-term anatomic and functional results
Contains fulltext :
108485.pdf (publisher's version ) (Open Access)INTRODUCTION AND HYPOTHESIS: The aim of this study was to evaluate short-term anatomic and functional outcomes and safety of laparoscopic sacrocolpopexy with bone anchor fixation. METHODS: A prospective cohort study of women undergoing laparoscopic sacrocolpopexy between 2004 and 2009. Anatomic outcome was assessed using the pelvic organ prolapse quantification score (POP-Q). Functional outcomes were assessed using the Urogenital Distress Inventory, Defecatory Distress Inventory, and the Incontinence Impact Questionnaire preoperatively and at 6 months postoperatively. The Wilcoxon signed rank test was used to test differences between related samples. RESULTS: Forty-nine women underwent laparoscopic sacrocolpopexy. The objective success rate in the apical compartment was 98%, subjective success rate was 79%. One mesh exposure (2%) was found. One conversion was necessary due to injury to the ileum. CONCLUSIONS: Laparoscopic sacrocolpopexy with bone anchor fixation is a safe and efficacious treatment for apical compartment prolapse. It provides excellent apical support and good functional outcome 6 months postoperatively.1 april 201
- …