99 research outputs found
Facilitated diffusion of DNA-binding proteins
The diffusion-controlled limit of reaction times for site-specific
DNA-binding proteins is derived from first principles. We follow the generally
accepted concept that a protein propagates via two competitive modes, a
three-dimensional diffusion in space and a one-dimensional sliding along the
DNA. However, our theoretical treatment of the problem is new. The accuracy of
our analytical model is verified by numerical simulations. The results confirm
that the unspecific binding of protein to DNA, combined with sliding, is
capable to reduce the reaction times significantly.Comment: 4 pages, 2 figures Nov 22 2005 - accepted for PR
Scattering functions of knotted ring polymers
We discuss the scattering function of a Gaussian random polygon with N nodes
under a given topological constraint through simulation. We obtain the Kratky
plot of a Gaussian polygon of N=200 having a fixed knot for some different
knots such as the trivial, trefoil and figure-eight knots. We find that some
characteristic properties of the different Kratky plots are consistent with the
distinct values of the mean square radius of gyration for Gaussian polygons
with the different knots.Comment: 4pages, 3figures, 3table
Modeling Bacterial DNA: Simulation of Self-avoiding Supercoiled Worm-Like Chains Including Structural Transitions of the Helix
Under supercoiling constraints, naked DNA, such as a large part of bacterial
DNA, folds into braided structures called plectonemes. The double-helix can
also undergo local structural transitions, leading to the formation of
denaturation bubbles and other alternative structures. Various polymer models
have been developed to capture these properties, with Monte-Carlo (MC)
approaches dedicated to the inference of thermodynamic properties. In this
chapter, we explain how to perform such Monte-Carlo simulations, following two
objectives. On one hand, we present the self-avoiding supercoiled Worm-Like
Chain (ssWLC) model, which is known to capture the folding properties of
supercoiled DNA, and provide a detailed explanation of a standard MC simulation
method. On the other hand, we explain how to extend this ssWLC model to include
structural transitions of the helix.Comment: Book chapter to appear in The Bacterial Nucleoid, Methods and
Protocols, Springer serie
Observation of X-rays during heating a pyroelectric crystal by an infrared laser
A pyroelectric X-ray source is proposed, in which a lithium tantalate crystal is heated by an infrared laser with a wavelength of 10.6 μm. X-ray spectra measured during irradiation of the crystal with infrared radiation and during natural cooling of the crystal include characteristic X-ray radiation of atoms contained in the structural parts of the source, as well as bremsstrahlung of electrons with energies above 50 keV. An 8 mm sodium chloride window was used to inject 64 W infrared radiation into a vacuum chamber with the pyroelectric crystal installe
Investigation of neutron generation upon irradiation of deuterated crystalline structures with an electron beam
The possibility of neutron generation by irradiating deuterated crystalline structures with an electron beam with an energy of 20-40 keV was studied. As targets, the deuterated crystalline structures of palladium and textured CVD diamond were used. Measurements of neutron emission are presented, which were carried out by three independent methods-scintillation detectors, counters based on He-3, and track detectors CR-3
Topological entropy of a stiff ring polymer and its connection to DNA knots
We discuss the entropy of a circular polymer under a topological constraint.
We call it the {\it topological entropy} of the polymer, in short. A ring
polymer does not change its topology (knot type) under any thermal
fluctuations. Through numerical simulations using some knot invariants, we show
that the topological entropy of a stiff ring polymer with a fixed knot is
described by a scaling formula as a function of the thickness and length of the
circular chain. The result is consistent with the viewpoint that for stiff
polymers such as DNAs, the length and diameter of the chains should play a
central role in their statistical and dynamical properties. Furthermore, we
show that the new formula extends a known theoretical formula for DNA knots.Comment: 14pages,11figure
Critical exponents for random knots
The size of a zero thickness (no excluded volume) polymer ring is shown to
scale with chain length in the same way as the size of the excluded volume
(self-avoiding) linear polymer, as , where . The
consequences of that fact are examined, including sizes of trivial and
non-trivial knots.Comment: 4 pages, 0 figure
Gyration radius of a circular polymer under a topological constraint with excluded volume
It is nontrivial whether the average size of a ring polymer should become
smaller or larger under a topological constraint.
Making use of some knot invariants, we evaluate numerically the mean square
radius of gyration for ring polymers having a fixed knot type, where the ring
polymers are given by self-avoiding polygons consisting of freely-jointed hard
cylinders. We obtain plots of the gyration radius versus the number of
polygonal nodes for the trivial, trefoil and figure-eight knots. We discuss
possible asymptotic behaviors of the gyration radius under the topological
constraint. In the asymptotic limit, the size of a ring polymer with a given
knot is larger than that of no topological constraint when the polymer is thin,
and the effective expansion becomes weak when the polymer is thick enough.Comment: 12pages,3figure
- …