11,691 research outputs found
From Perturbation Theory to Confinement: How the String Tension is built up
We study the spatial volume dependence of electric flux energies for SU(2)
Yang-Mills fields on the torus with twisted boundary conditions. The results
approach smoothly the rotational invariant Confinement regime. The would-be
string tension is very close to the infinite volume result already for volumes
of . We speculate on the consequences of our result for
the Confinement mechanism.Comment: 6p, ps-file (uuencoded). Contribution to Lattice'93 Conference
(Dallas, 1993). Preprint INLO-PUB 18/93, FTUAM-93/4
Isolated vacua in supersymmetric Yang-Mills theories
An explicit proof of the existence of nontrivial vacua in the pure
supersymmetric Yang-Mills theories with higher orthogonal SO(N), N>=7 or the
G_2 gauge group defined on a 3-torus with periodic boundary conditions is
given. Extra vacuum states are separated by an energy barrier from the
perturbative vacuum A_i=0 and its gauge copies.Comment: 8 pages, no figures, late
Optimality of programmable quantum measurements
We prove that for a programmable measurement device that approximates every
POVM with an error , the dimension of the program space has to grow
at least polynomially with . In the case of qubits we can
improve the general result by showing a linear growth. This proves the
optimality of the programmable measurement devices recently designed in [G. M.
D'Ariano and P. Perinotti, Phys. Rev. Lett. \textbf{94}, 090401 (2005)]
Modified Gravity at Astrophysical Scales
Using a perturbative approach we solve stellar structure equations for
low-density (solar-type) stars whose interior is described with a polytropic
equation of state in scenarios involving a subset of modified gravity theories.
Rather than focusing on particular theories, we consider a model-independent
approach in which deviations from General Relativity are effectively described
by a single parameter . We find that for length scales below those set by
stellar General Relativistic radii the modifications introduced by modified
gravity can affect the computed values of masses and radii. As a consequence,
the stellar luminosity is also affected. We discuss possible further
implications for higher density stars and observability of the effects before
described.Comment: 12 pages, 7figures, matches published versio
Oversampling in shift-invariant spaces with a rational sampling period
8 pages, no figures.It is well known that, under appropriate hypotheses, a sampling formula allows us to recover any function in a principal shift-invariant space from its samples taken with sampling period one. Whenever the generator of the shift-invariant space satisfies the Strang-Fix conditions of order r, this formula also provides an approximation scheme of order r valid for smooth functions. In this paper we obtain sampling formulas sharing the same features by using a rational sampling period less than one. With the use of this oversampling technique, there is not one but an infinite number of sampling formulas. Whenever the generator has compact support, among these formulas it is possible to find one whose associated reconstruction functions have also compact support.This work has been supported by the Grant MTM2009-08345 from the D.G.I. of the Spanish Ministerio de Ciencia y TecnologĂa
Hypoxic Cell Waves around Necrotic Cores in Glioblastoma: A Biomathematical Model and its Therapeutic Implications
Glioblastoma is a rapidly evolving high-grade astrocytoma that is
distinguished pathologically from lower grade gliomas by the presence of
necrosis and microvascular hiperplasia. Necrotic areas are typically surrounded
by hypercellular regions known as "pseudopalisades" originated by local tumor
vessel occlusions that induce collective cellular migration events. This leads
to the formation of waves of tumor cells actively migrating away from central
hypoxia. We present a mathematical model that incorporates the interplay among
two tumor cell phenotypes, a necrotic core and the oxygen distribution. Our
simulations reveal the formation of a traveling wave of tumor cells that
reproduces the observed histologic patterns of pseudopalisades. Additional
simulations of the model equations show that preventing the collapse of tumor
microvessels leads to slower glioma invasion, a fact that might be exploited
for therapeutic purposes.Comment: 29 pages, 9 figure
- âŠ