4,835 research outputs found

    Scattering from a Domain Wall in a Spontaneously Broken Gauge Theory

    Full text link
    We study the interaction of particles with a domain wall at a symmetry-breaking phase transition by perturbing about the domain wall solution. We find the particulate excitations appropriate near the domain wall and relate them to the particles present far from the wall in the uniform broken and unbroken phases. For a quartic Higgs potential we find analytic solutions to the equations of motion and derive reflection and transmission coefficients. We discover several bound states for particles near the wall. Finally, we apply our results to the electroweak phase transition in the standard model.Comment: 48 pages, 10 figures, LaTeX / epsf, revised to include references to earlier related wor

    Statistical Matrix for Electroweak Baryogenesis

    Full text link
    In electroweak baryogenesis, a domain wall between the spontaneously broken and unbroken phases acts as a separator of baryon (or lepton) number, generating a baryon asymmetry in the universe. If the wall is thin relative to plasma mean free paths, one computes baryon current into the broken phase by determining the quantum mechanical transmission of plasma components in the potential of the spatially changing Higgs VEV. We show that baryon current can also be obtained using a statistical density operator. This new formulation of the problem provides a consistent framework for studying the influence of quasiparticle lifetimes on baryon current. We show that when the plasma has no self-interactions, familiar results are reproduced. When plasma self-interactions are included, the baryon current into the broken phase is related to an imaginary time temperature Green's function.Comment: 20 pages, no figures, Late

    Recalculation of Proton Compton Scattering in Perturbative QCD

    Get PDF
    At very high energy and wide angles, Compton scattering on the proton (gamma p -> gamma p) is described by perturbative QCD. The perturbative QCD calculation has been performed several times previously, at leading twist and at leading order in alpha_s, with mutually inconsistent results, even when the same light-cone distribution amplitudes have been employed. We have recalculated the helicity amplitudes for this process, using contour deformations to evaluate the singular integrals over the light-cone momentum fractions. We do not obtain complete agreement with any previous result. Our results are closest to those of the most recent previous computation, differing significantly for just one of the three independent helicity amplitudes, and only for backward scattering angles. We present results for the unpolarized cross section, and for three different polarization asymmetries. We compare the perturbative QCD predictions for these observables with those of the handbag and diquark models. In order to reduce uncertainties associated with alpha_s and the three-quark wave function normalization, we have normalized the Compton cross section using the proton elastic form factor. The theoretical predictions for this ratio are about an order of magnitude below existing experimental data.Comment: Latex, 23 pages, 13 figures. Checked numerical integration one more way; added results for one more proton distribution amplitude; a few other minor changes. Version to appear in Phys. Rev.

    Effective CP violation in the Standard Model

    Full text link
    We study the strength of effective CP violation originating from the CKM matrix in the effective action obtained by integrating out the fermions in the Standard Model. Using results obtained by Salcedo for the effective action in a general chiral gauge model, we find that there are no CKM CP-violating terms to fourth order in a gauge-covariant derivative expansion that is non-perturbative in the Higgs field. The details of the calculation suggest that, at zero temperature, the strength of CP violation is approximately independent of the overall scale of the Yukawa couplings. Thus, order of magnitude estimates based on Jarlskog's invariant could be too small by a factor of about 10^{17}.Comment: 19 pages, no figure

    Possible manifestation of heavy stable colored particles in cosmology and cosmic rays

    Get PDF
    We discuss the cosmological implications as well as possible observability of massive, stable, colored particles which often appear in the discussion of physics beyond the standard model. We argue that if their masses are more than a few hundred GeV and if they saturate the halo density and/or occur with closure density of the universe, they are ruled out by the present WIMP search experiments as well as the searches for anomalous heavy isotopes of ordinary nuclei. We then comment on the possibility that these particles as well as the monopoles could be responsible for the ultra high energy cosmic rays with energy ≥1020\geq 10^{20} eV and point out that their low inelasticity argues against this.Comment: 9 pages; UMD-PP-98-1

    Experiments to Find or Exclude a Long-Lived, Light Gluino

    Get PDF
    Gluinos in the mass range ~1 1/2 - 3 1/2 GeV are absolutely excluded. Lighter gluinos are allowed, except for certain ranges of lifetime. Only small parts of the mass-lifetime parameter space are excluded for larger masses unless the lifetime is shorter than ~ 2 10^{-11} (m_{gluino}/ GeV) sec. Refined mass and lifetime estimates for R-hadrons are given, present direct and indirect experimental constraints are reviewed, and experiments to find or definitively exclude these possibilities are suggested.Comment: 27 pp, latex with 1 uufiled figure, RU-94-35. New version amplifies discussion of some points and corresponds to version for Phys. Rev.

    Interacting Dark Matter and Dark Energy

    Full text link
    We discuss models for the cosmological dark sector in which the energy density of a scalar field approximates Einstein's cosmological constant and the scalar field value determines the dark matter particle mass by a Yukawa coupling. A model with one dark matter family can be adjusted so the observational constraints on the cosmological parameters are close to but different from what is predicted by the Lambda CDM model. This may be a useful aid to judging how tightly the cosmological parameters are constrained by the new generation of cosmological tests that depend on the theory of structure formation. In a model with two families of dark matter particles the scalar field may be locked to near zero mass for one family. This can suppress the long-range scalar force in the dark sector and eliminate evolution of the effective cosmological constant and the mass of the nonrelativistic dark matter particles, making the model close to Lambda CDM, until the particle number density becomes low enough to allow the scalar field to evolve. This is a useful example of the possibility for complexity in the dark sector.Comment: 15 pages, 6 figures; added a reference and a minor correctio

    Optimizing Miscanthus for the Sustainable Bioeconomy:From Genes to Products

    Get PDF
    In this Research Topic we report advances in fundamental and applied aspects of the perennial C4 bioenergy crop Miscanthus (Miscanthus spp.) and its role in mitigating climate change as part of the bioeconomy. Miscanthus is extremely well suited for bioenergy, biofuel and bioproduct production over a wide geographic area including Europe and North America as well as its native Asia. Miscanthus offers a unique perspective within plant science: the challenge is to domesticate this novel crop for diverse environments and uses while simultaneously developing sustainable value chains to displace fossil fuels and contribute to climate change mitigation. Contributions to this Research Topic were offered from leading Miscanthus researchers from different parts of the world. We accepted 16 articles from 95 authors, which have generated 21,161 views at March 26 2018. Nine of the articles are the output of the European FP7 OPTIMISC project and describe multiple experiments investigating a common set of Miscanthus genotypes in Europe and Asia. These papers are complemented by seven additional articles from global authors, providing a comprehensive analysis of the state of the art of Miscanthus research and application

    Electroweak Baryogenesis and Standard Model CP Violation

    Full text link
    We analyze the mechanism of electroweak baryogenesis proposed by Farrar and Shaposhnikov in which the phase of the CKM mixing matrix is the only source of CPCP violation. This mechanism is based on a phase separation of baryons via the scattering of quasiparticles by the wall of an expanding bubble produced at the electroweak phase transition. In agreement with the recent work of Gavela, Hern\'andez, Orloff and P\`ene, we conclude that QCD damping effects reduce the asymmetry produced to a negligible amount. We interpret the damping as quantum decoherence. We compute the asymmetry analytically. Our analysis reflects the observation that only a thin, outer layer of the bubble contributes to the coherent scattering of the quasiparticles. The generality of our arguments rules out any mechanism of electroweak baryogenesis that does not make use of a new source of CPCP violation.Comment: 36 pages, in LaTeX, one LaTeX figure included, 5 others available upon request, SLAC-PUB-647
    • …
    corecore