In electroweak baryogenesis, a domain wall between the spontaneously broken
and unbroken phases acts as a separator of baryon (or lepton) number,
generating a baryon asymmetry in the universe. If the wall is thin relative to
plasma mean free paths, one computes baryon current into the broken phase by
determining the quantum mechanical transmission of plasma components in the
potential of the spatially changing Higgs VEV. We show that baryon current can
also be obtained using a statistical density operator. This new formulation of
the problem provides a consistent framework for studying the influence of
quasiparticle lifetimes on baryon current. We show that when the plasma has no
self-interactions, familiar results are reproduced. When plasma
self-interactions are included, the baryon current into the broken phase is
related to an imaginary time temperature Green's function.Comment: 20 pages, no figures, Late