43,732 research outputs found

    Nuclear effects in photoproduction of heavy quarks and vector mesons in ultraperipheral PbPb and pPb collisions at the LHC

    Full text link
    The comparison of photoproduction cross sections for ccˉc\bar{c} and b-b(bar) in PbPb and pPb collisions can give sensitivity to nuclear shadowing effects. The photoproduction of vector mesons is even more sensitive to the underlying gluon distributions. In this study we present the cross sections and rapidity dependence of the photoproduction of heavy quarks and exclusive production of vector mesons in ultraperipheral pPb and PbPb collisions at the Large Hadron Collider at sqrt(s_NN)=5 TeV and sqrt(s_NN)=2.76TeV,respectively.Thepotentialsofusingtheseprocessesforconstrainingnucleargluonshadowingareexplored.Itisfoundthatphotoproductionof TeV, respectively. The potentials of using these processes for constraining nuclear gluon shadowing are explored. It is found that photoproduction of J/\psiand and \Upsilon$ in PbPb collisions in particular exhibit very good sensitivity to gluon shadowing.Comment: 4 pages, 4 figure

    Estimation over Communication Networks: Performance Bounds and Achievability Results

    Get PDF
    This paper considers the problem of estimation over communication networks. Suppose a sensor is taking measurements of a dynamic process. However the process needs to be estimated at a remote location connected to the sensor through a network of communication links that drop packets stochastically. We provide a framework for computing the optimal performance in the sense of expected error covariance. Using this framework we characterize the dependency of the performance on the topology of the network and the packet dropping process. For independent and memoryless packet dropping processes we find the steady-state error for some classes of networks and obtain lower and upper bounds for the performance of a general network. Finally we find a necessary and sufficient condition for the stability of the estimate error covariance for general networks with spatially correlated and Markov type dropping process. This interesting condition has a max-cut interpretation

    Structural and functional conservation of the human homolog of the Schizosaccharomyces pombe rad2 gene, which is required for chromosome segregation and recovery from DNA damage

    Get PDF
    The rad2 mutant of Schizosaccharomyces pombe is sensitive to UV irradiation and deficient in the repair of UV damage. In addition, it has a very high degree of chromosome loss and/or nondisjunction. We have cloned the rad2 gene and have shown it to be a member of the Saccharomyces cerevisiae RAD2/S. pombe rad13/human XPG family. Using degenerate PCR, we have cloned the human homolog of the rad2 gene. Human cDNA has 55% amino acid sequence identity to the rad2 gene and is able to complement the UV sensitivity of the rad2 null mutant. We have thus isolated a novel human gene which is likely to be involved both in controlling the fidelity of chromosome segregation and in the repair of UV-induced DNA damage. Its involvement in two fundamental processes for maintaining chromosomal integrity suggests that it is likely to be an important component of cancer avoidance mechanisms

    Electronic control/display interface technology

    Get PDF
    An effort to produce a representative workstation for the Space Station Data Management Test Bed that provides man/machine interface design options for consolidating, automating, and integrating the space station work station, and hardware/software technology demonstrations of space station applications is discussed. The workstation will emphasize the technologies of advanced graphics engines, advanced display/control medias, image management techniques, multifunction controls, and video disk utilizations

    Cell patterning on photolithographically defined parylene-C:SiO2 substrates

    Get PDF
    Cell patterning platforms support broad research goals, such as construction of predefined in vitro neuronal networks and the exploration of certain central aspects of cellular physiology. To easily combine cell patterning with Multi-Electrode Arrays (MEAs) and silicon-based ‘lab on a chip’ technologies, a microfabrication-compatible protocol is required. We describe a method that utilizes deposition of the polymer parylene-C on SiO(2 )wafers. Photolithography enables accurate and reliable patterning of parylene-C at micron-level resolution. Subsequent activation by immersion in fetal bovine serum (or another specific activation solution) results in a substrate in which cultured cells adhere to, or are repulsed by, parylene or SiO(2) regions respectively. This technique has allowed patterning of a broad range of cell types (including primary murine hippocampal cells, HEK 293 cell line, human neuron-like teratocarcinoma cell line, primary murine cerebellar granule cells, and primary human glioma-derived stem-like cells). Interestingly, however, the platform is not universal; reflecting the importance of cell-specific adhesion molecules. This cell patterning process is cost effective, reliable, and importantly can be incorporated into standard microfabrication (chip manufacturing) protocols, paving the way for integration of microelectronic technology

    Fisher waves in the strong noise limit

    Full text link
    We investigate the effects of strong number fluctuations on traveling waves in the Fisher-Kolmogorov reaction-diffusion system. Our findings are in stark contrast to the commonly used deterministic and weak-noise approximations. We compute the wave velocity in one and two spatial dimensions, for which we find a linear and a square-root dependence of the speed on the particle density. Instead of smooth sigmoidal wave profiles, we observe fronts composed of a few rugged kinks that diffuse, annihilate, and rarely branch; this dynamics leads to power-law tails in the distribution of the front sizes.Comment: 4 pages, 2 figures, updat

    Unmasking the Active Galactic Nucleus in PKS J2310-437

    Full text link
    PKS J2310-437 is an AGN with bright X-ray emission relative to its weak radio emission and optical continuum. It is believed that its jet lies far enough from the line of sight that it is not highly relativistically beamed. It thus provides an extreme test of AGN models. We present new observations aimed at refining the measurement of the source's properties. In optical photometry with the NTT we measure a central excess with relatively steep spectrum lying above the bright elliptical galaxy emission, and we associate the excess wholly or in part with the AGN. A new full-track radio observation with the ATCA finds that the core 8.64GHz emission has varied by about 20 per cent over 38 months, and improves the mapping of the weak jet. With Chandra we measure a well-constrained power-law spectral index for the X-ray core, uncontaminated by extended emission from the cluster environment, with a negligible level of intrinsic absorption. Weak X-ray emission from the resolved radio jet is also measured. Our analysis suggests that the optical continuum in this radio galaxy has varied by at least a factor of four over a timescale of about two years, something that should be testable with further observations. We conclude that the most likely explanation for the bright central X-ray emission is synchrotron radiation from high-energy electrons.Comment: 7 pages, 12 figure

    Small world effect in an epidemiological model

    Full text link
    A model for the spread of an infection is analyzed for different population structures. The interactions within the population are described by small world networks, ranging from ordered lattices to random graphs. For the more ordered systems, there is a fluctuating endemic state of low infection. At a finite value of the disorder of the network, we find a transition to self-sustained oscillations in the size of the infected subpopulation
    • 

    corecore