3,608 research outputs found

    Discovering neutrinoless double-beta decay in the era of precision neutrino cosmology

    Get PDF
    We evaluate the discovery probability of a combined analysis of proposed neutrinoless double-beta decay experiments in a scenario with normal ordered neutrino masses. The discovery probability strongly depends on the value of the lightest neutrino mass, ranging from zero in case of vanishing masses and up to 80-90% for values just below the current constraints. We study the discovery probability in different scenarios, focusing on the exciting prospect in which cosmological surveys will measure the sum of neutrino masses. Uncertainties in nuclear matrix element calculations partially compensate each other when data from different isotopes are available. Although a discovery is not granted, the theoretical motivations for these searches and the presence of scenarios with high-discovery probability strongly motivates the proposed international, multi-isotope experimental program

    Sonoluminescing air bubbles rectify argon

    Get PDF
    The dynamics of single bubble sonoluminescence (SBSL) strongly depends on the percentage of inert gas within the bubble. We propose a theory for this dependence, based on a combination of principles from sonochemistry and hydrodynamic stability. The nitrogen and oxygen dissociation and subsequent reaction to water soluble gases implies that strongly forced air bubbles eventually consist of pure argon. Thus it is the partial argon (or any other inert gas) pressure which is relevant for stability. The theory provides quantitative explanations for many aspects of SBSL.Comment: 4 page

    Dynamics of the Light-Cone Zero Modes: Theta Vacuum of the Massive Schwinger Model

    Full text link
    The massive Schwinger model is quantized on the light cone with great care on the bosonic zero modes by putting the system in a finite (light-cone) spatial box. The zero mode of AA_{-} survives Dirac's procedure for the constrained system as a dynamical degree of freedom. After regularization and quantization, we show that the physical space condition is consistently imposed and relates the fermion Fock states to the zero mode of the gauge field. The vacuum is obtained by solving a Schr\"odinger equation in a periodic potential, so that the theta is understood as the Bloch momentum. We also construct a one-meson state in the fermion-antifermion sector and obtained the Schr\"odinger equation for it.Comment: 23 pages, RevTex, no figure

    Proton induced thermal stress-wave measurements using a Laser Doppler Vibrometer

    Get PDF
    Abstract.: Thermal stress-waves are generated in the solid target material when the proton beam interacts. These stress waves excite natural oscillations of the target or cause plastic deformations. Hence, an experimental setup with a laser Doppler vibrometer [CITE] was developed to investigate free surface vibrations of cylindrical targets. The target configurations for RIB and conventional neutrino beams (CNGS project) were investigated to analyze proton induced thermal stress-wave generation and propagatio

    Zero Mode and Symmetry Breaking on the Light Front

    Full text link
    We study the zero mode and the spontaneous symmetry breaking on the light front (LF). We use the discretized light-cone quantization (DLCQ) of Maskawa-Yamawaki to treat the zero mode in a clean separation from all other modes. It is then shown that the Nambu-Goldstone (NG) phase can be realized on the trivial LF vacuum only when an explicit symmetry-breaking mass of the NG boson mπm_{\pi} is introduced. The NG-boson zero mode integrated over the LF must exhibit singular behavior 1/mπ2 \sim 1/m_{\pi}^2 in the symmetric limit mπ0m_{\pi}\to 0, which implies that current conservation is violated at zero mode, or equivalently the LF charge is not conserved even in the symmetric limit. We demonstrate this peculiarity in a concrete model, the linear sigma model, where the role of zero-mode constraint is clarified. We further compare our result with the continuum theory. It is shown that in the continuum theory it is difficult to remove the zero mode which is not a single mode with measure zero but the accumulating point causing uncontrollable infrared singularity. A possible way out within the continuum theory is also suggested based on the ``ν\nu theory''. We finally discuss another problem of the zero mode in the continuum theory, i.e., no-go theorem of Nakanishi-Yamawaki on the non-existence of LF quantum field theory within the framework of Wightman axioms, which remains to be a challenge for DLCQ, ``ν\nu theory'' or any other framework of LF theory.Comment: 60 pages, the final section has been expanded. A few minor corrections; version to be published in Phys. Rev.

    Renormal-order improvement of the Schwinger mass

    Get PDF
    The massive Schwinger model may be analysed by a perturbation expansion in the fermion mass. However, the results of this mass perturbation theory are sensible only for sufficiently small fermion mass. By performing a renormal-ordering, we arrive at a chiral perturbation expansion where the expansion parameter remains small even for large fermion mass. We use this renormal-ordered chiral perturbation theory for a computation of the Schwinger mass and compare our results with lattice computations.Comment: Latex file, 13 pages, 3 figures, needed macro: psbox.te

    Bubble Shape Oscillations and the Onset of Sonoluminescence

    Get PDF
    An air bubble trapped in water by an oscillating acoustic field undergoes either radial or nonspherical pulsations depending on the strength of the forcing pressure. Two different instability mechanisms (the Rayleigh--Taylor instability and parametric instability) cause deviations from sphericity. Distinguishing these mechanisms allows explanation of many features of recent experiments on sonoluminescence, and suggests methods for finding sonoluminescence in different parameter regimes.Comment: Phys. Rev. Lett., in pres

    Duas novas espécies de opiliões

    Get PDF
    corecore