19,200 research outputs found

    Phase transition in the globalization of trade

    Get PDF
    Globalization processes interweave economic structures at a worldwide scale, trade playing a central role as one of the elemental channels of interaction among countries. Despite the significance of such phenomena, measuring economic globalization still remains an open problem. More quantitative treatments could improve the understanding of globalization at the same time that help a formal basis for comparative economic history. In this letter, we investigate the time evolution of the statistical properties of bilateral trade imbalances between countries in the trade system. We measure their cumulative probability distribution at different moments in time to discover a sudden transition circa 1960 from a regime where the distribution was always represented by a steady characteristic function to a new state where the distribution dilates as time goes on. This suggests that the rule that was governing the statistical behavior of bilateral trade imbalances until the 60's abruptly changed to a new form persistent in the last decades. In the new regime, the figures for the different years collapse into a universal master curve when rescaled by the corresponding global gross domestic product value. This coupling points to an increased interdependence of world economies and its onset corresponds in time with the starting of the last globalization wave.Comment: Final versio

    Partnering with community?an option for infrastructure procurement

    Get PDF

    Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers

    Get PDF
    Hydrogen-oxygen solid polymer electrolyte (SPE) fuel cells and SPE electrolyzers (products of Hamilton Standard) both use a Proton-Exchange Membrane (PEM) as the sole electrolyte. These solid electrolyte devices have been under continuous development for over 30 years. This experience has resulted in a demonstrated ten-year SPE cell life capability under load conditions. Ultimate life of PEM fuel cells and electrolyzers is primarily related to the chemical stability of the membrane. For perfluorocarbon proton exchange membranes an accurate measure of the membrane stability is the fluoride loss rate. Millions of cell hours have contributed to establishing a relationship between fluoride loss rates and average expected ultimate cell life. This relationship is shown. Several features have been introduced into SPE fuel cells and SPE electrolyzers such that applications requiring greater than or equal to 100,000 hours of life can be considered. Equally important as the ultimate life is the voltage stability of hydrogen-oxygen fuel cells and electrolyzers. Here again the features of SPE fuel cells and SPE electrolyzers have shown a cell voltage stability in the order of 1 microvolt per hour. That level of stability has been demonstrated for tens of thousands of hours in SPE fuel cells at up to 500 amps per square foot (ASF) current density

    Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers

    Get PDF
    Hydrogen-oxygen SPE fuel cells and SPE electrolyzers (products of Hamilton Standard) both use a Proton-Exchange Membrane (PEM) as the sole electrolyte. The SPE cells have demonstrated a ten year life capability under load conditions. Ultimate life of PEM fuel cells and electrolyzers is primarily related to the chemical stability of the membrane. For perfluorocarbon proton-exchange membranes an accurate measure of the membrane stability is the fluoride loss rate. Millions of cell hours have contributed to establishing a relationship between fluroride loss rates and average expected ultimate cell life. Several features were introduced into SPE fuel cells and SPE electrolyzers such that applications requiring greater than or equal to 100,000 hours of life can be considered. Equally important as the ultimate life is the voltage stability of hydrogen-oxygen fuel cells and electrolyzers. Here again the features of SPE fuel cells and SPE electrolyzers have shown a cell voltage stability in the order of 1 microvolt per hour. That level of stability were demonstrated for tens of thousands of hours in SPE fuel cells at up to 500 amps per square foot (ASF) current density. The SPE electrolyzers have demonstrated the same at 1000 ASF. Many future extraterrestrial applications for fuel cells require that they be self recharged. To translate the proven SPE cell life and stability into a highly reliable extraterrestrial electrical energy storage system, a simplification of supporting equipment is required. Static phase separation, static fluid transport and static thermal control will be most useful in producting required system reliability. Although some 200,000 SPE fuel cell hours were recorded in earth orbit with static fluid phase separation, no SPE electrolyzer has, as yet, operated in space

    Deriving bases for Abelian functions

    Full text link
    We present a new method to explicitly define Abelian functions associated with algebraic curves, for the purpose of finding bases for the relevant vector spaces of such functions. We demonstrate the procedure with the functions associated with a trigonal curve of genus four. The main motivation for the construction of such bases is that it allows systematic methods for the derivation of the addition formulae and differential equations satisfied by the functions. We present a new 3-term 2-variable addition formulae and a complete set of differential equations to generalise the classic Weierstrass identities for the case of the trigonal curve of genus four.Comment: 35page

    On the size of the Fe II emitting region in the AGN Akn 120

    Full text link
    We present a reverberation analysis of the strong, variable optical Fe II emission bands in the spectrum of Akn 120, a low-redshift AGN which is one of the best candidates for such a study. On time scales of several years the Fe II line strengths follow the variations in the continuum strength. However, we are unable to measure a clear reverberation lag time for these Fe II lines on any time scale. This is due to the very broad and flat-topped nature of the Fe II cross correlation functions, as compared to the H-beta response which is much more sharply localized in time. Although there is some suggestion in the light curve of a 300-day response time, our statistical analysis does not pick up such a feature. We conclude that the optical Fe II emission does not come from a photoionization-powered region similar in size to the H-beta emitting region, but we cannot say for sure where it does come from. Our results are generally consistent either with emission from a photoionized region several times larger than the H-beta zone, or with emission from gas heated by some other means, perhaps responding only indirectly to the continuum variations.Comment: Accepted for publication in the Ap

    Superfluid and Mott Insulator phases of one-dimensional Bose-Fermi mixtures

    Get PDF
    We study the ground state phases of Bose-Fermi mixtures in one-dimensional optical lattices with quantum Monte Carlo simulations using the Canonical Worm algorithm. Depending on the filling of bosons and fermions, and the on-site intra- and inter-species interaction, different kinds of incompressible and superfluid phases appear. On the compressible side, correlations between bosons and fermions can lead to a distinctive behavior of the bosonic superfluid density and the fermionic stiffness, as well as of the equal-time Green functions, which allow one to identify regions where the two species exhibit anticorrelated flow. We present here complete phase diagrams for these systems at different fillings and as a function of the interaction parameters.Comment: 8 pages, 12 figure
    corecore