243 research outputs found

    Advances in small lasers

    Get PDF
    M.T.H was supported by an Australian Research council Future Fellowship research grant for this work. M.C.G. is grateful to the Scottish Funding Council (via SUPA) for financial support.Small lasers have dimensions or modes sizes close to or smaller than the wavelength of emitted light. In recent years there has been significant progress towards reducing the size and improving the characteristics of these devices. This work has been led primarily by the innovative use of new materials and cavity designs. This Review summarizes some of the latest developments, particularly in metallic and plasmonic lasers, improvements in small dielectric lasers, and the emerging area of small bio-compatible or bio-derived lasers. We examine the different approaches employed to reduce size and how they result in significant differences in the final device, particularly between metal- and dielectric-cavity lasers. We also present potential applications for the various forms of small lasers, and indicate where further developments are required.PostprintPeer reviewe

    ЭФФЕКТИВНОСТЬ МЕТОДА АКТИВНОГО КОНТРОЛЯ ЭКСКУРСИИ ЛЕГКОГО ПРИ ОБЛУЧЕНИИ СОЛИТАРНЫХ ОПУХОЛЕЙ

    Get PDF
    In this paper, we present the efficiency estimations of active breathing control with usage ABC system to ensure accuracy and reproducibility of patient positioning for hypofractionated or radiosurgery treatment of solitary lung tumors. The treatment procedures were holding on Elekta Axesse linac. Patients were positioning as for CT pretreatment scanning in supine position with hands behind their head and with using additional fixation (usually, knee and head support cushions). Patient’s position corrections were done with usage 3D imaging system XVI (Elekta AB) and robotic couch HexaPod to match isocenters the treatment plan and linac. It’s considered the interfraction patients’ offsets due to inaccurate setup and respiratory movements. It’s developed a protocol of choosing CTV-PTV margins for use in clinical practice, which is 5-9 mm, depending on anatomical directions. The margins have the greatest value in vertical (SI) and much lesser in transverse (LR) and longitudinal (AP) directions.В данной работе проведена оценка эффективности активного контроля дыхания пациента при помощи системы ABC в обеспечении точности и воспроизводимости укладки пациента при проведении гипофракционного или радиохирургического лечения больных с солитарными опухолями легкого. Сеанс облучения пациентов на медицинском ускорителе Elekta Axesse проводился в положении лежа с заведенными за голову руками и с использованием дополнительных фиксирующих устройств (чаще всего фиксация для ног и головы), как при выполнении референсных КТ-снимков. Положение пациента корректировалось средствами системы трехмерной рентгеновской визуализации XVI (Elekta AB) при помощи роботизированного стола HexaPod для совмещения изоцентра лечебного плана и изоцентра ускорителя. Рассмотрены интерфракционные смещения пациента, вызванные неточной укладкой и респираторными движениями. Разработан протокол выбора отступов CTV-PTV рекомендуемых для использования в клинической практике, которые составляют 5-9 мм, в зависимости от анатомического направления. Они имеют наибольшую величину в вертикальном (SI) и значительно меньшую в поперечном (LR) и продольном направлениях (AP)

    Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers

    Get PDF
    Polymer-based pressure sensors play a key role in realizing lightweight and inexpensive wearable devices for healthcare and environmental monitoring systems. Here, conductive core/shell polymer nanofibers composed of poly (vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP)/poly(3,4-ethylenedioxythiophene) (PEDOT) are fabricated using three-dimensional (3D) electrospinning and vapor deposition polymerization methods, and the resulting sponge-like 3D membranes are used to create piezoresistive-type pressure sensors. Interestingly, the PEDOT shell consists of well-dispersed spherical bumps, leading to the formation of a hierarchical conductive surface that enhances the sensitivity to external pressure. The sponge-like 3D mats exhibit a much higher pressure sensitivity than the conventional electrospun 2D mats due to their enhanced porosity and pressure-tunable contact area. Furthermore, large-area, wireless, 16 x 10 multiarray pressure sensors for the spatiotemporal mapping of multiple pressure points and wearable bands for monitoring blood pressure have been fabricated from these 3D mats. To the best of our knowledge, this is the first report of the fabrication of electrospun 3D membranes with nanoscopically engineered fibers that can detect changes in external pressure with high sensitivity. The developed method opens a new route to the mass production of polymer-based pressure sensors with high mechanical durability, which creates additional possibilities for the development of human-machine interfaces.11Ysciescopu

    Nanotools for Neuroscience and Brain Activity Mapping

    Get PDF
    Neuroscience is at a crossroads. Great effort is being invested into deciphering specific neural interactions and circuits. At the same time, there exist few general theories or principles that explain brain function. We attribute this disparity, in part, to limitations in current methodologies. Traditional neurophysiological approaches record the activities of one neuron or a few neurons at a time. Neurochemical approaches focus on single neurotransmitters. Yet, there is an increasing realization that neural circuits operate at emergent levels, where the interactions between hundreds or thousands of neurons, utilizing multiple chemical transmitters, generate functional states. Brains function at the nanoscale, so tools to study brains must ultimately operate at this scale, as well. Nanoscience and nanotechnology are poised to provide a rich toolkit of novel methods to explore brain function by enabling simultaneous measurement and manipulation of activity of thousands or even millions of neurons. We and others refer to this goal as the Brain Activity Mapping Project. In this Nano Focus, we discuss how recent developments in nanoscale analysis tools and in the design and synthesis of nanomaterials have generated optical, electrical, and chemical methods that can readily be adapted for use in neuroscience. These approaches represent exciting areas of technical development and research. Moreover, unique opportunities exist for nanoscientists, nanotechnologists, and other physical scientists and engineers to contribute to tackling the challenging problems involved in understanding the fundamentals of brain function

    T-Cell Artificial Focal Triggering Tools: Linking Surface Interactions with Cell Response

    Get PDF
    T-cell activation is a key event in the immune system, involving the interaction of several receptor ligand pairs in a complex intercellular contact that forms between T-cell and antigen-presenting cells. Molecular components implicated in contact formation have been identified, but the mechanism of activation and the link between molecular interactions and cell response remain poorly understood due to the complexity and dynamics exhibited by whole cell-cell conjugates. Here we demonstrate that simplified model colloids grafted so as to target appropriate cell receptors can be efficiently used to explore the relationship of receptor engagement to the T-cell response. Using immortalized Jurkat T cells, we monitored both binding and activation events, as seen by changes in the intracellular calcium concentration. Our experimental strategy used flow cytometry analysis to follow the short time scale cell response in populations of thousands of cells. We targeted both T-cell receptor CD3 (TCR/CD3) and leukocyte-function-associated antigen (LFA-1) alone or in combination. We showed that specific engagement of TCR/CD3 with a single particle induced a transient calcium signal, confirming previous results and validating our approach. By decreasing anti-CD3 particle density, we showed that contact nucleation was the most crucial and determining step in the cell-particle interaction under dynamic conditions, due to shear stress produced by hydrodynamic flow. Introduction of LFA-1 adhesion molecule ligands at the surface of the particle overcame this limitation and elucidated the low TCR/CD3 ligand density regime. Despite their simplicity, model colloids induced relevant biological responses which consistently echoed whole cell behavior. We thus concluded that this biophysical approach provides useful tools for investigating initial events in T-cell activation, and should enable the design of intelligent artificial systems for adoptive immunotherapy

    Noninvasive optical inhibition with a red-shifted microbial rhodopsin

    Get PDF
    Optogenetic inhibition of the electrical activity of neurons enables the causal assessment of their contributions to brain functions. Red light penetrates deeper into tissue than other visible wavelengths. We present a red-shifted cruxhalorhodopsin, Jaws, derived from Haloarcula (Halobacterium) salinarum (strain Shark) and engineered to result in red light–induced photocurrents three times those of earlier silencers. Jaws exhibits robust inhibition of sensory-evoked neural activity in the cortex and results in strong light responses when used in retinas of retinitis pigmentosa model mice. We also demonstrate that Jaws can noninvasively mediate transcranial optical inhibition of neurons deep in the brains of awake mice. The noninvasive optogenetic inhibition opened up by Jaws enables a variety of important neuroscience experiments and offers a powerful general-use chloride pump for basic and applied neuroscience.McGovern Institute for Brain Research at MIT (Razin Fellowship)United States. Defense Advanced Research Projects Agency. Living Foundries Program (HR0011-12-C-0068)Harvard-MIT Joint Research Grants Program in Basic NeuroscienceHuman Frontier Science Program (Strasbourg, France)Institution of Engineering and Technology (A. F. Harvey Prize)McGovern Institute for Brain Research at MIT. Neurotechnology (MINT) ProgramNew York Stem Cell Foundation (Robertson Investigator Award)National Institutes of Health (U.S.) (New Innovator Award 1DP2OD002002)National Institute of General Medical Sciences (U.S.) (EUREKA Award 1R01NS075421)National Institutes of Health (U.S.) (Grant 1R01DA029639)National Institutes of Health (U.S.) (Grant 1RC1MH088182)National Institutes of Health (U.S.) (Grant 1R01NS067199)National Science Foundation (U.S.) (Career Award CBET 1053233)National Science Foundation (U.S.) (Grant EFRI0835878)National Science Foundation (U.S.) (Grant DMS0848804)Society for Neuroscience (Research Award for Innovation in Neuroscience)Wallace H. Coulter FoundationNational Institutes of Health (U.S.) (RO1 MH091220-01)Whitehall FoundationEsther A. & Joseph Klingenstein Fund, Inc.JPB FoundationPIIF FundingNational Institute of Mental Health (U.S.) (R01-MH102441-01)National Institutes of Health (U.S.) (DP2-OD-017366-01)Massachusetts Institute of Technology. Simons Center for the Social Brai

    Transcriptional Upregulation of NLRC5 by Radiation Drives STING- and Interferon-Independent MHC-I Expression on Cancer Cells and T Cell Cytotoxicity.

    Get PDF
    Radiation therapy has been shown to enhance the efficacy of various T cell-targeted immunotherapies that improve antigen-specific T cell expansion, T regulatory cell depletion, or effector T cell function. Additionally, radiation therapy has been proposed as a means to recruit T cells to the treatment site and modulate cancer cells as effector T cell targets. The significance of these features remains unclear. We set out to determine, in checkpoint inhibitor resistant models, which components of radiation are primarily responsible for overcoming this resistance. In order to model the vaccination effect of radiation, we used a Listeria monocytogenes based vaccine to generate a large population of tumor antigen specific T cells but found that the presence of cells with cytotoxic capacity was unable to replicate the efficacy of radiation with combination checkpoint blockade. Instead, we demonstrated that a major role of radiation was to increase the susceptibility of surviving cancer cells to CD8+ T cell-mediated control through enhanced MHC-I expression. We observed a novel mechanism of genetic induction of MHC-I in cancer cells through upregulation of the MHC-I transactivator NLRC5. These data support the critical role of local modulation of tumors by radiation to improve tumor control with combination immunotherapy

    Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers

    Get PDF
    Flexible information displays are key elements in future optoelectronic devices. Quantum dot light-emitting diodes (QLEDs) with advantages in color quality, stability, and cost-effectiveness are emerging as a candidate for single-material, full color light sources. Despite the recent advances in QLED technology, making high-performance flexible QLEDs still remains a big challenge due to limited choices of proper materials and device architectures as well as poor mechanical stability. Here, we show highly efficient, large-area QLED tapes emitting in red, green, and blue (RGB) colors with top-emitting design and polyimide tapes as flexible substrates. The brightness and quantum efficiency are 20 000 cd/m2 and 4.03%, respectively, the highest values reported for flexible QLEDs. Besides the excellent electroluminescence performance, these QLED films are highly flexible and mechanically robust to use as electrically driven light-emitting stickers by placing on or removing from any curved surface, facilitating versatile LED applications. Our QLED tapes present a step toward practical quantum dot based platforms for high-performance flexible displays and solid-state lighting. © 2014 American Chemical Society

    Comparison of Health and Risk Factors of Older, Working-age Australians, Italians and Italian-born Migrants to Australia, with Data from an Italian (PASSI), and an Australian (SAMSS) Risk Factor Surveillance System

    Get PDF
    Italian-born migrants (post-WWII) are the largest non-English-speaking background migrant group in South Australia. A cross-sectional, inter-country comparison using independent samples (40â\u80\u9369 years of age) from two (one in Australia, one in Italy) similar risk factor and chronic disease surveillance systems. None of the three groups (Italians, Australian-born and Italian-born Australians) had definitively worse health although the Italians had high rates for four of the seven risk factors reported (current high blood pressure, current high cholesterol, current smoking, eating less than five fruit and/or vegetables per day) than Australian-born and Italian-born Australians. Italian-born Australians had higher rates for insufficient physical activity, overweight/obese, poor self-reported health and diabetes. Australian respondents were more likely to report having two or more drinks of alcohol per day. Issues facing an ageing population require appropriate health care needs and an assessment of structural or cultural barriers to health services
    corecore