1,425 research outputs found
Detection of TeV emission from the intriguing composite SNR G327.1-1.1
The shock wave of supernova remnants (SNRs) and the wind termination shock in
pulsar wind nebula (PWNe) are considered as prime candidates to accelerate the
bulk of Galactic cosmic ray (CR) ions and electrons. The SNRs hosting a PWN
(known as composite SNRs) provide excellent laboratories to test these
hypotheses. The SNR G327.1-1.1 belongs to this category and exhibits a shell
and a bright central PWN, both seen in radio and X-rays. Interestingly, the
radio observations of the PWN show an extended blob of emission and a curious
narrow finger structure pointing towards the offset compact X-ray source
indicating a possible fast moving pulsar in the SNR and/or an asymmetric
passage of the reverse shock. We report here on the observations, for a total
of 45 hours, of the SNR G327.1-1.1 with the H.E.S.S. telescope array which
resulted in the detection of TeV gamma-ray emission in spatial coincidence with
the PWN.Comment: Proceeding of the 32nd ICRC, August 11-18 2011, Beijing, Chin
Virtual distances methodology as verification technique for AACMMs with a capacitive sensor based indexed metrology platform
This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform’s mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument’s working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform
A review of tangential composite and radial composite gear inspection
This paper presents an overview of the literature on tangential composite and radial composite gear inspection. It demonstrates – by dealing with their origins and key milestones in their history and development – the important role that inspections play in terms of the functional nature of the gears concerned. This comprehensive consideration of the subject also attempts to demonstrate how the lack of clear guidelines and standards designed to unify the criteria applied to testing, the interpretation of results and calibration of equipment, along with the number of simultaneous variables involved in trials of this type, leads to doubts (including with respect to the actual standards concerned) as to whether these tests are valid, or instead accepted only has partial validations. Even so, the repeatability of the experimental data demonstrates not only their metrological potential, with respect to functionality, but also the fact that they are both effective and origina
Printed circuit board coil design with reduced series resistance for high power inductive wireless power transmission systems
Due to the growing use of the popular wireless power transmission (WPT) technology, an innovative method of coil design and optimization is presented in this paper. This method has been applied to develop spiral printed circuit board (PCB) coils with litz-wire structure. From the geometry definition, the design process is carried out by means of finite element analysis (FEA). In addition, as a complement to the design process, some prototypes of spiral PCB coils were built to contrast the simulation results and experimental measurements by means of the small-signal characterization, which reflects the success of the applied method
Value stream analysis in military logistics: The improvement in order processing procedure
Military logistics is a complex process where response times, demand uncertainty, wide variety of material references, and cost-effectiveness are decisive for combat capability. The demanding flexibility can only be achieved by improving supply chain management (SCM) to minimize lead times. To cope with these requirements, lean thinking can be extended to military organizations. This research justifies and proposes the use of lean methodologies to improve logistics processes with the case study of a military unit. In particular, the article presents the results obtained using value stream mapping (VSM) and value stream design (VSD) tools to improve the order processing lead time of spare items. The procedure starts with an order generation from a military unit that requests the material and ends before transportation to the final destination. The whole project was structured, considering the define-measure-analyze-improve-control (DMAIC) problem-solving methodology. The results show that the future state map might increase added-value activities from 44% to 70%. After implementation, it was demonstrated that the methodology applied reduced the lead-time average and deviation up to 69.6% and 61.9%, respectively
Analysis of a low ozone episode over Extremadura (Spain) in January 2006 and its influence on UV radiation
The main objectives of this work are to analyze, firstly, the detail of the causes of a low ozone event which occurred in January 2006 and, secondly, the related effects of this anomalous episode on ultraviolet (UV) radiation measured at three locations in Extremadura (South-Western Spain). On 19 January 2006, the OMI total ozone column (TOC) was 16–20% below the January mean value of TOMS/NASA TOC (period 1996–2005). The back trajectories analysis with the HYSplit model indicates that the notable decrease of TOC could be attributed to a fast rise of the isentropic trajectories height. Concomitantly, UV erythemal radiation greatly increases (between 23% and 37%) on 19 January 2006 respect to UV erythemal radiation measured on 19 January 2005. This notable increase in winter UV solar radiation may involve harmful effects for organisms adapted to receive less radiation during that season (e.g. early developmental stages of terrestrial plants and phytoplankton)
A new calibration guideline for worm and worm-gear rolling testers
The evaluation and calibration of gear testers are considered as a key point to ensure the obtained results in gear metrology. Although ISO TC 60 working group has developed standards in this regard, the fact is that for the time being, there are not specific international standards for gear rolling tests. In this work, a periodical calibration guideline for gear rolling testers, particularly for worm gear transmission, is proposed, allowing the reduction of possible error sources in the measurement process. A series of tasks distributed over time are suggested in this work to maintain the accuracy of the gear rolling test machines
Application of virtual distances methodology to laser tracker verification with an indexed metrology platform
High-range measuring equipment like laser trackers need large dimension calibrated reference artifacts in their calibration and verification procedures. In this paper, a new verification procedure for portable coordinate measuring instruments based on the generation and evaluation of virtual distances with an indexed metrology platform is developed. This methodology enables the definition of an unlimited number of reference distances without materializing them in a physical gauge to be used as a reference. The generation of the virtual points and reference lengths derived is linked to the concept of the indexed metrology platform and the knowledge of the relative position and orientation of its upper and lower platforms with high accuracy. It is the measuring instrument together with the indexed metrology platform one that remains still, rotating the virtual mesh around them. As a first step, the virtual distances technique is applied to a laser tracker in this work. The experimental verification procedure of the laser tracker with virtual distances is simulated and further compared with the conventional verification procedure of the laser tracker with the indexed metrology platform. The results obtained in terms of volumetric performance of the laser tracker proved the suitability of the virtual distances methodology in calibration and verification procedures for portable coordinate measuring instruments, broadening and expanding the possibilities for the definition of reference distances in these procedures
Self-adaptive overtemperature protection materials for safety-centric domestic induction heating applications
Security aspects in the household sphere have become a major concern in modern societies. In particular, regardless of the technology used, users increasingly appreciate a protection system to prevent material damage in the case of human errors or distractions during the cooking process. This paper presents a sensorless method for detecting and limiting overtemperature, unique to induction cooktops, based on their specific features, such as automatic pot detection and load power factor estimation. The protection system exploits the change in the load material properties at certain temperatures, the effect of which may be enhanced by arranging a multilayer structure comprising a low Curie temperature alloy and an aluminum layer. The proposed multilayer load exhibits two differentiated states: a normal state, where the cookware is efficiently heated, and a protection state, above the safety temperature, where the power factor abruptly decreases, limiting the overheating and making the state easily detectable by the cooktop. This method of overtemperature self-protection uses the electronics of conventional induction cooktops; therefore, no other sensors or systems are required, reducing its complexity and costs. Simulation and experimental results are provided for several cookware designs, thereby proving the feasibility of this proposal
- …