666 research outputs found

    Tratamiento quirúrgico de los síndromes dolorosos regionales complejos tipo II y utilidad de la monitorización neurofisiológica intraoperatoria

    Get PDF
    ResumenEl propósito de esta revisión era presentar las bases bilógicas y fisiopatológicas de la formación de neuromas como causa de los síndromes dolorosos regional (SDRC) tipo II y el uso de la monitorización neurofisiológica intraoperatoria en el tratamiento de los SDRC tipo II secundarios a neuromas en continuidad y en nervios adheridos en cicatrices tras cirugías previas.AbstractThe purpose of this review article was to present the biological and physiological bases of the Complex Regional Pain Syndrome (CRPS) type II and the use of iIntraoperative neurophysiological monitoring in the treatment of CRPS type II secondary to neuroma-in-continuity and scar-tethered nerves

    Oxygen Isotopes in Authigenic Clay Minerals: Toward Building a Reliable Salinity Proxy

    Get PDF
    Most clay minerals in sedimentary environments have traditionally been considered to be of detrital origin, but under certain conditions, authigenic clay minerals can form at low temperature through the transformation of precursor clays or as direct precipitates from lake water. Such clay minerals can hold important information about the prevailing climatic conditions during the time of deposition. We present the first quantitative reconstruction of salinity in paleolake Olduvai based on the oxygen‐isotope composition of authigenic clay minerals. We provide a framework illustrating that the isotopic signature of authigenic lacustrine clay minerals is related to the isotopic composition of paleo‐waters, and hence to paleosalinity. This new paleosalinity proxy shows that the early Pleistocene East African monsoon was driven by combinations of precession and obliquity forcing and subsequent changes in tropical sea surface temperatures. Such quantitative lacustrine paleosalinity estimates provide a new direction of research for modeling ecosystem change based on an ecologically relevant parameter

    TargetSearch - a Bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data

    No full text
    Background: Metabolite profiling, the simultaneous quantification of multiple metabolites in an experiment, is becoming increasingly popular, particularly with the rise of systems-level biology. The workhorse in this field is gas-chromatography hyphenated with mass spectrometry (GC-MS). The high-throughput of this technology coupled with a demand for large experiments has led to data pre-processing, i.e. the quantification of metabolites across samples, becoming a major bottleneck. Existing software has several limitations, including restricted maximum sample size, systematic errors and low flexibility. However, the biggest limitation is that the resulting data usually require extensive hand-curation, which is subjective and can typically take several days to weeks. Results: We introduce the TargetSearch package, an open source tool which is a flexible and accurate method for pre-processing even very large numbers of GC-MS samples within hours. We developed a novel strategy to iteratively correct and update retention time indices for searching and identifying metabolites. The package is written in the R programming language with computationally intensive functions written in C for speed and performance. The package includes a graphical user interface to allow easy use by those unfamiliar with R. Conclusions: TargetSearch allows fast and accurate data pre-processing for GC-MS experiments and overcomes the sample number limitations and manual curation requirements of existing software. We validate our method by carrying out an analysis against both a set of known chemical standard mixtures and of a biological experiment. In addition we demonstrate its capabilities and speed by comparing it with other GC-MS pre-processing tools. We believe this package will greatly ease current bottlenecks and facilitate the analysis of metabolic profiling data

    Detection of protection benefits for predatory fishes depends on census methodology

    Get PDF
    Marine protected areas (MPAs) are used as fisheries management and conservation tools. Well-enforced no-take zones allow the rebuilding of natural populations of exploited species; however, there is still controversy on the role of buffer zones. The effectiveness of MPAs could be underestimated, as fish population assessments depend largely on traditional methodologies that have difficulties in detecting predatory fish because of their low abundances, their patchy distribution, and their reaction to the presence of divers. The performance of different census methods was compared in assessing the protection benefits for large predatory fishes under different protection levels (i.e. no-take and buffer zones) in five Mediterranean MPAs. Specifically, conventional strip transects (CSTs, 50 × 5 m2) and tracked roaming transects combined with distance sampling (TRT + DS, variable lengths) were compared, including a series of TRT-derived estimators with variable transect lengths and fixed widths of 20, 10, and 6 m (TRT20, TRT10, and TRT6, respectively). Additionally, the effectiveness of the MPAs studied and protection levels for conserving large predatory species was evaluated. Transects covering larger areas (i.e. TRT + DS and TRT20) allowed the detection of a greater number of species and yielded more accurate estimates of density and biomass than transects of narrower fixed widths, particularly the CSTs, which were associated with the lowest richness detection capability, accuracy, and precision. On average, both no-take zones and buffer zones appeared effective for the conservation of predatory fishes, indicating that multiple protection areas were ecologically effective. Differences between MPAs were also observed, however, probably arising from both local environmental and management factors. We suggest the implementation of methodologies with larger transects for the study of large predatory fish, combined with CSTs for the rest of the fish community, in order to avoid biases in predatory population assessments, which are key indicators of MPA effectiveness

    Onset of microglial entry into developing quail retina coincides with increased expression of active caspase-3 and is mediated by extracellular ATP and UDP

    Get PDF
    Microglial cell precursors located in the area of the base of the pecten and the optic nerve head (BP/ONH) start to enter the retina of quail embryos at the 7 th day of incubation (E7), subsequently colonizing the entire retina by central-to-peripheral tangential migration, as previously shown by our group. The present study demonstrates a precise chronological coincidence of the onset of microglial cell entry into the retina with a striking increase in death of retinal cells, as revealed by their active caspase-3 expression and TUNEL staining, in regions dorsal to the BP/ONH area, suggesting that dying retinal cells would contribute to the microglial cell inflow into the retina. However, the molecular mechanisms involved in this inflow are currently unclear. Extracellular nucleotides, such as ATP and UDP, have previously been shown to favor migration of microglia towards brain injuries because they are released by apoptotic cells and stimulate both chemotaxis and chemokinesis in microglial cells via signaling through purinergic receptors. Hence, we tested here the hypothesis that ATP and UDP play a role in the entry and migration of microglial precursors into the developing retina. For this purpose, we used an experimental model system based on organotypic cultures of E6.5 quail embryo retina explants, which mimics the entry and migration of microglial precursors in the in situ developing retina. Inhibition of purinergic signaling by treating retina explants with either apyrase, a nucleotide-hydrolyzing enzyme, or suramin, a broad spectrum antagonist of purinergic receptors, significantly prevents the entry of microglial cells into the retina. In addition, treatment of retina explants with either exogenous ATP or UDP results in significantly increased numbers of microglial cells entering the retina. In light of these findings, we conclude that purinergic signaling by extracellular ATP and UDP is necessary for the entry and migration of microglial cells into the embryonic retina by inducing chemokinesis in these cells

    Magnetic field-induced weak-to-strong-link transformation in patterned superconducting films

    Full text link
    Ubiquitous in most superconducting materials and a common result of nanofabrication processes, weak-links are known for their limiting effects on the transport of electric currents. Still, they are at the root of key features of superconducting technology. By performing quantitative magneto-optical imaging experiments and thermomagnetic model simulations, we correlate the existence of local maxima in the magnetization loops of FIB-patterned Nb films to a magnetic field-induced weak-to-strong-link transformation increasing their critical current. This phenomenon arises from the nanoscale interaction between quantized magnetic flux lines and FIB-induced modifications of the device microstructure. Under an ac drive field, this leads to a rectified vortex motion along the weak-link. The reported tunable effect can be exploited in the development of new superconducting electronic devices, such as flux pumps and valves, to attenuate or amplify the supercurrent through a circuit element, and as a strategy to enhance the critical current in weak-link-bearing devices.Comment: 12 pages and 5 figure

    Preparation of anti-vicinal amino alcohols: asymmetric synthesis of D-erythro-Sphinganine, (+)-spisulosine and D-ribo-phytosphingosine

    Get PDF
    Two variations of the Overman rearrangement have been developed for the highly selective synthesis of anti-vicinal amino alcohol natural products. A MOM-ether directed palladium(II)-catalyzed rearrangement of an allylic trichloroacetimidate was used as the key step for the preparation of the protein kinase C inhibitor D-erythro-sphinganine and the antitumor agent (+)-spisulosine, while the Overman rearrangement of chiral allylic trichloroacetimidates generated by asymmetric reduction of an alpha,beta-unsaturated methyl ketone allowed rapid access to both D-ribo-phytosphingosine and L-arabino-phytosphingosine

    Cross-feeding between intestinal pathobionts promotes their overgrowth during undernutrition

    Get PDF
    Child undernutrition is a global health issue associated with a high burden of infectious disease. Undernourished children display an overabundance of intestinal pathogens and pathobionts, and these bacteria induce enteric dysfunction in undernourished mice; however, the cause of their overgrowth remains poorly defined. Here, we show that disease-inducing human isolates of Enterobacteriaceae and Bacteroidales spp. are capable of multi-species symbiotic cross-feeding, resulting in synergistic growth of a mixed community in vitro. Growth synergy occurs uniquely under malnourished conditions limited in protein and iron: in this context, Bacteroidales spp. liberate diet- and mucin-derived sugars and Enterobacteriaceae spp. enhance the bioavailability of iron. Analysis of human microbiota datasets reveals that Bacteroidaceae and Enterobacteriaceae are strongly correlated in undernourished children, but not in adequately nourished children, consistent with a diet-dependent growth synergy in the human gut. Together these data suggest that dietary cross-feeding fuels the overgrowth of pathobionts in undernutrition
    corecore