1,355 research outputs found
Development of Lumped Element Kinetic Inductance Detectors for the W-Band
We are developing a Lumped Element Kinetic Inductance Detector (LEKID) array
able to operate in the W-band (75-110 GHz) in order to perform ground-based
Cosmic Microwave Background (CMB) and mm-wave astronomical observations. The
W-band is close to optimal in terms of contamination of the CMB from Galactic
synchrotron, free-free, and thermal interstellar dust. In this band, the
atmosphere has very good transparency, allowing interesting ground-based
observations with large (>30 m) telescopes, achieving high angular resolution
(<0.4 arcmin). In this work we describe the startup measurements devoted to the
optimization of a W-band camera/spectrometer prototype for large aperture
telescopes like the 64 m SRT (Sardinia Radio Telescope). In the process of
selecting the best superconducting film for the LEKID, we characterized a 40 nm
thick Aluminum 2-pixel array. We measured the minimum frequency able to break
CPs (i.e. ) obtaining
GHz, that corresponds to a critical temperature of 1.31 K. This is not suitable
to cover the entire W-band. For an 80 nm layer the minimum frequency decreases
to 93.2 GHz, which corresponds to a critical temperature of 1.28 K; this value
is still suboptimal for W-band operation. Further increase of the Al film
thickness results in bad performance of the detector. We have thus considered a
Titanium-Aluminum bi-layer (10 nm thick Ti + 25 nm thick Al, already tested in
other laboratories), for which we measured a critical temperature of 820 mK and
a cut-on frequency of 65 GHz: so this solution allows operation in the entire
W-band.Comment: 16th International Workshop on Low Temperature Detectors, Grenoble
20-24 July 2015, Journal of Low Temperature Physics, Accepte
Heparan Sulfate Proteoglycans Mediate the Angiogenic Activity of the Vascular Endothelial Growth Factor Receptor-2 Agonist Gremlin.
OBJECTIVE: Heparan sulfate proteoglycans (HSPGs) modulate the interaction of proangiogenic heparin-binding vascular endothelial growth factors (VEGFs) with signaling VEGF receptor-2 (VEGFR2) and neuropilin coreceptors in endothelial cells (ECs). The bone morphogenic protein antagonist gremlin is a proangiogenic ligand of VEGFR2, distinct from canonical VEGFs. Here we investigated the role of HSPGs in VEGFR2 interaction, signaling, and proangiogenic capacity of gremlin in ECs.
METHODS AND RESULTS: Surface plasmon resonance demonstrated that gremlin binds heparin and heparan sulfate, but not other glycosaminoglycans, via N-, 2-O, and 6-O-sulfated groups of the polysaccharide. Accordingly, gremlin binds HSPGs of the EC surface and extracellular matrix. Gremlin/HSPG interaction is prevented by free heparin and heparan sulfate digestion or undersulfation following EC treatment with heparinase II or sodium chlorate. However, at variance with canonical heparin-binding VEGFs, gremlin does not interact with neuropilin-1 coreceptor. On the other hand, HSPGs mediate VEGFR2 engagement and autophosphorylation, extracellular signaling-regulated kinase(1/2) and p38 mitogen-activated protein kinase activation, and consequent proangiogenic responses of ECs to gremlin. On this basis, we evaluated the gremlin-antagonist activity of a panel of chemically sulfated derivatives of the Escherichia coli K5 polysaccharide. The results demonstrate that the highly N,O-sulfated derivative K5-N,OS(H) binds gremlin with high potency, thus inhibiting VEGFR2 interaction and angiogenic activity in vitro and in vivo.
CONCLUSIONS: HSPGs act as functional gremlin coreceptors in ECs, affecting its productive interaction with VEGFR2 and angiogenic activity. This has allowed the identification of the biotechnological K5-N,OS(H) as a novel angiostatic gremlin antagonist
Matrigel plug assay: evaluation of the angiogenic response by reverse transcription-quantitative PCR
The subcutaneous Matrigel plug assay in mice
is a method of choice for the in vivo evaluation of pro- and
anti-angiogenic molecules. However, quantification of the
angiogenic response in the plug remains a problematic task.
Here we report a simple, rapid, unbiased and reverse
transcription-quantitative PCR (RT-qPCR) method to
investigate the angiogenic process occurring in the Matrigel
plug in response to fibroblast growth factor-2 (FGF2).
To this purpose, a fixed amount of human cells were added
to harvested plugs at the end of the in vivo experimentation
as an external cell tracer. Then, mRNA levels of the panendothelial
cell markers murine CD31 and vascular
endothelial-cadherin were measured by species-specific
RT-qPCR analysis of the total RNA and data were normalized
for human GAPDH or b-actin mRNA levels. RTqPCR
was used also to measure the levels of expression in
the plug of various angiogenesis/inflammation-related
genes. The procedure allows the simultaneous, quantitative
evaluation of the newly-formed endothelium and of nonendothelial/
inflammatory components of the cellular infiltrate
in the Matrigel implant, as well as the expression of
genes involved in the modulation of the angiogenesis
process. Also, the method consents the quantitative
assessment of the effect of local or systemic administration
of anti-angiogenic compounds on the neovascular response
triggered by FGF
Mammalian tumor xenografts induce neovascularization in zebrafish embryos.
The zebrafish (Danio rerio)/tumor xenograft model represents
a powerful new model system in cancer. Here, we describe a
novel exploitation of the zebrafish model to investigate tumor
angiogenesis, a pivotal step in cancer progression and target
for antitumor therapies. Human and murine tumor cell lines
that express the angiogenic fibroblast growth factor (FGF) 2
and/or vascular endothelial growth factor (VEGF) induce the
rapid formation of a new microvasculature when grafted close
to the developing subintestinal vessels of zebrafish embryos at
48 h postfertilization. Instead, no angiogenic response was
exerted by related cell clones defective in the production of
these angiogenic growth factors. The newly formed blood
vessels sprout from the subintestinal plexus of the zebrafish
embryo, penetrate the tumor graft, and express the transcripts
for the zebrafish orthologues of the early endothelial markers
Fli-1, VEGF receptor-2 (VEGFR2/KDR), and VE-cadherin.
Accordingly, green fluorescent protein–positive neovessels
infiltrate the graft when tumor cells are injected in transgenic
VEGFR2:G-RCFP zebrafish embryos that express green fluorescent
protein under the control of the VEGFR2/KDR
promoter. Systemic exposure of zebrafish embryos immediately
after tumor cell injection to prototypic antiangiogenic
inhibitors, including the FGF receptor tyrosine kinase inhibitor
SU5402 and the VEGFR2/KDR tyrosine kinase inhibitor
SU5416, suppresses tumor-induced angiogenesis without
affecting normal blood vessel development. Accordingly,
VE-cadherin gene inactivation by antisense morpholino
oligonucleotide injection inhibits tumor neovascularization
without affecting the development of intersegmental and
subintestinal vessels. These data show that the zebrafish/
tumor xenograft model represents a novel tool for investigating
the neovascularization process exploitable for drug
discovery and gene targeting in tumor angiogenesis
Cutting edge: extracellular high mobility group box-1 protein is a proangiogenic cytokine.
The chromosomal high mobility group box-1 (HMGB1) protein acts as a proinflammatory cytokine when released in the extracellular environment by necrotic and inflammatory cells. In the present study, we show that HMGB1 exerts proangiogenic effects by inducing MAPK ERK1/2 activation, cell proliferation, and chemotaxis in endothelial cells of different origin. Accordingly, HMGB1 stimulates membrane ruffling and repair of a mechanically wounded endothelial cell monolayer and causes endothelial cell sprouting in a three-dimensional fibrin gel. In keeping with its in vitro properties, HMGB1 stimulates neovascularization when applied in vivo on the top of the chicken embryo chorioallantoic membrane whose blood vessels express the HMGB1 receptor for advanced glycation end products (RAGE). Accordingly, RAGE blockade by neutralizing Abs inhibits HMGB1-induced neovascularization in vivo and endothelial cell proliferation and membrane ruffling in vitro. Taken together, the data identify HMGB1/RAGE interaction as a potent proangiogenic stimulus
The broad-spectrum anti-DNA virus agent cidofovir inhibits lung metastasis of virus-independent, FGF2-driven tumors.
The FDA-approved anti-DNA virus agent cidofovir (CDV) is being evaluated in phase II/III clinical trials for the treatment of human papillomavirus (HPV)-associated tumors. However, previous observations had shown that CDV also inhibits the growth of vascular tumors induced by fibroblast growth factor-2 (FGF2)-transformed FGF2-T-MAE cells. Here, we demonstrate that CDV inhibits metastasis induced by FGF2-driven, virus-independent tumor cells. Pre-treatment of luciferase-expressing FGF2-T-MAE cells with CDV reduced single cell survival and anchorage-independent growth in vitro and lung metastasis formation upon intravenous inoculation into SCID mice. This occurred in the absence of any effect on homing of FGF2-T-MAE cells to the lungs and on the growth of subconfluent cell cultures or subcutaneous tumors in mice. Accordingly, CDV protected against lung metastasis when given systemically after tumor cell injection. Lung metastases in CDV-treated mice showed reduced Ki67 expression and increased nuclear accumulation of p53, indicating that CDV inhibits metastasis by affecting single cell survival properties. The anti-metastatic potential of CDV was confirmed on B16-F10 melanoma cells, both in zebrafish embryos and mice. These findings suggest that CDV may have therapeutic potential as an anti-metastatic agent and warrants further study to select those tumor types that are most likely to benefit from CDV therapy
Anti-angiogenic activity of the flavonoid precursor 4-hydroxychalcone.
Angiogenesis, the growth of new blood vessels, is necessary for cancerous tumors to keep growing and spreading. Suppression of abnormal angiogenesis may provide therapeutic strategies for the treatment of angiogenesis-dependent disorders. In the present study, we describe the in vitro and in vivo anti-angiogenic activities of the flavonoid precursor 4-hydroxychalcone (Q797). This chalcone (22μg/ml) suppressed several steps of angiogenesis, including endothelial cell proliferation, migration and tube formation without showing any signs of cytotoxicity. Moreover, we found a selective effect on activated endothelial cells, in particular with resting endothelial cells and the human epithelial tumor cell lines (HeLa, MCF-7, A549). In addition, Q797 was able to modulate both vascular endothelial growth factor (VEGF)- and basic fibroblast growth factor (FGF)- induced phosphorylation of extracellular signal-regulated kinase (ERK)-1/-2 and Akt kinase. It did not influence the nuclear translocation of p65 subunit of the nuclear factor-κB (NF-κB) when human endothelial cells were stimulated with tumor necrosis factor (TNF)-α. Taken together this indicates that the Q797-mediated inhibition of in vitro angiogenic features of endothelial cells is most likely caused by suppression of growth factor pathways. The potent inhibitory effect of Q797 on bFGF-driven neovascularization was also demonstrated in vivo using the chick chorioallantoic membrane (CAM) assay. In summary, this chalcone could serve as a new leading structure in the discovery of new potent synthetic angiogenesis inhibitors
Nanoliter contact angle probes tumor angiogenic ligand-receptor protein interactions
Any molecular recognition reaction supported by a solid-phase drives a specific change of the solid-solution interfacial tension. Sessile Contact Angle (CA) experiments can be readily used to track this thermodynamic parameter, prompting this well-known technique to be reinvented as an alternative, easy-access and label-free way to probe and study molecular recognition events.
Here we deploy this technique, renamed for this application CONAMORE (CONtact Angle MOlecular REcognition), to study the interaction of the tumor-derived pro-angiogenic vascular endothelial growth factor-A (VEGF-A) with the extracellular domain of its receptor VEGFR2. We show that CONAMORE recognizes the high affinity binding of VEGF-A at nanomolar concentrations to surface-immobilized VEGFR2 regardless of the presence of a ten folds excess of a non specific interacting protein, and that it further proofs its specificity and reliability on competitive binding experiments involving neutralizing anti-VEGF-A antibodies. Finally, CONAMORE shows the outstanding capability to detect the specific interaction between VEGFR2 and low molecular weight ligands, such as Cyclo-VEGI, a VEGFR2 antagonist cyclo-peptide, that weights about 2 kDa
Gremlin is a novel agonist of the major pro-angiogenic receptor VEGFR2
The bone morphogenic protein antagonist gremlin is expressed during embryonic development and under different pathologic conditions, including cancer. Gremlin is a proangiogenic protein belonging to the cystine-knot superfamily that includes transforming growth factor-β proteins and the angiogenic vascular endothelial growth factors (VEGFs). Here, we demonstrate that gremlin binds VEGF receptor-2 (VEGFR2), the main transducer of VEGF-mediated angiogenic signals, in a bone morphogenic protein-independent manner. Similar to VEGF-A, gremlin activates VEGFR2 in endothelial cells, leading to VEGFR2-dependent angiogenic responses in vitro and in vivo. Gremlin thus represents a novel proangiogenic VEGFR2 agonist distinct from the VEGF family ligands with implications in vascular development, angiogenesis-dependent diseases, and tumor neovascularization
Kinetic Inductance Detectors for the OLIMPO experiment: design and pre-flight characterization
We designed, fabricated, and characterized four arrays of horn--coupled,
lumped element kinetic inductance detectors (LEKIDs), optimized to work in the
spectral bands of the balloon-borne OLIMPO experiment. OLIMPO is a 2.6 m
aperture telescope, aimed at spectroscopic measurements of the
Sunyaev-Zel'dovich (SZ) effect. OLIMPO will also validate the LEKID technology
in a representative space environment. The corrected focal plane is filled with
diffraction limited horn-coupled KID arrays, with 19, 37, 23, 41 active pixels
respectively at 150, 250, 350, and 460GHz. Here we report on the full
electrical and optical characterization performed on these detector arrays
before the flight. In a dark laboratory cryostat, we measured the resonator
electrical parameters, such as the quality factors and the electrical
responsivities, at a base temperature of 300mK. The measured average
resonator s are 1.7, 7.0, 1.0, and
1.0 for the 150, 250, 350, and 460GHz arrays, respectively.
The average electrical phase responsivities on resonance are 1.4rad/pW,
1.5rad/pW, 2.1rad/pW, and 2.1rad/pW; the electrical noise
equivalent powers are 45, 160,
80, and 140, at 12 Hz. In the OLIMPO
cryostat, we measured the optical properties, such as the noise equivalent
temperatures (NET) and the spectral responses. The measured NETs are
, , ,
and , at 12 Hz; under 78, 88, 92, and 90 mK
Rayleigh-Jeans blackbody load changes respectively for the 150, 250, 350, and
460 GHz arrays. The spectral responses were characterized with the OLIMPO
differential Fourier transform spectrometer (DFTS) up to THz frequencies, with
a resolution of 1.8 GHz.Comment: Published on JCA
- …
