43 research outputs found

    Safety and Efficacy of Subcutaneous Rituximab in Previously Untreated Patients with CD20+ Diffuse Large B-Cell Lymphoma or Follicular Lymphoma: Results from an Italian Phase IIIb Study

    Get PDF
    Subcutaneous (SC) rituximab may be beneficial in terms of convenience and tolerability, with potentially fewer and less severe administration-related reactions (ARRs) compared to the intravenous (IV) form. This report presents the results of a phase IIIb study conducted in Italy. The study included adult patients with CD20+ DLBCL or FL having received at least one full dose of IV RTX 375 mg/m2 during induction or maintenance. Patients on induction received ≥4 cycles of RTX SC 1400 mg plus standard chemotherapy and FL patients on maintenance received ≥6 cycles of RTX SC. Overall, 159 patients (73 DLBCL, 86 FL) were enrolled: 103 (54 DLBCL, 49 FL) completed induction and 42 patients with FL completed 12 maintenance cycles. ARRs were reported in 10 patients (6.3%), 3 (4.2%) with DLBCL and 7 (8.1%) with FL, all of mild severity, and resolved without dose delay/discontinuation. Treatment-emergent adverse events (TEAEs) and serious adverse events occurred in 41 (25.9%) and 14 patients (8.9%), respectively. Two patients with DLBCL had fatal events: Klebsiella infection (related to rituximab) and septic shock (related to chemotherapy). Neutropenia (14 patients, 8.9%) was the most common treatment-related TEAE. Two patients with DLBCL (2.8%) and 6 with FL (7.0%) discontinued rituximab due to TEAEs. 65.2% and 69.7% of patients with DLBCL and 67.9% and 73.6% of patients with FL had complete response (CR) and CR unconfirmed, respectively. The median time to events (EFS, PFS, and OS) was not estimable due to the low rate of events. At a median follow-up of 29.5 and 47.8 months in patients with DLBCL and FL, respectively, EFS, PFS, and OS were 70.8%, 70.8%, and 80.6% in patients with DLBCL and 77.9%, 77.9%, and 95.3% in patients with FL, respectively. The switch from IV to SC rituximab in patients with DLBCL and FL was associated with low risk of ARRs and satisfactory response in both groups. This trial was registered with NCT01987505

    Synthesis and cytotoxicity of substituted 2-benzylnaphth[2,3-<i>d</i>]imidazoles

    No full text
    Designed as a new series of so called “bivalent ligand” containing the proposed 2-benzylnaphthimidazole-type structure, a number of 2-benzylnaphth[2,3-d]imidazoles, bearing various substituents, have been prepared by a synthetic approach involving an heterocyclization of 2,3-diaminonaphthalene 4 with appropriate imidates 3 (for 1b–i) followed by alkylation (for 1j–l) with the desired alkylating agent. Compounds 1b–f, h–l were subjected to primary biological evaluation for cancer cell growth inhibition (one-dose, three-cell assay), and the four most active terms, 1c, h, i and j, were then evaluated for their cytotoxic profiles in the National Cancer Institute’s (NCI) human disease-oriented, 60 cell line, in vitro antitumor screening protocol. Among them, two compounds (1h and 1i) are the most representatives demonstrating not only high growth-inhibitory activities against some leukemia cancer cells, but also fairly good activities against the growth of certain cell lines of some solid tumor

    Tricyclic pyrazoles. Part 1: synthesis and biological evaluation of novel 1,4-dihydroindeno[1,2-<i>c</i>]pyrazol-based ligands for CB<sub>1</sub> and CB<sub>2</sub> cannabinoid receptors

    No full text
    Cannabinoids receptors, cellular elements of the endocannabinoid system, have been the focus of extensive studies because of their potential functional role in several important physiological and pathological processes. To further evaluate the properties of CB receptors, especially CB1 and CB2 subtypes, we have designed, using SR141716A as a benchmark, a new series of rigid 1-aryl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamides. Compounds 1 were synthesized from substituted 1-aryl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxylic acids and requisite amines. The various analogues were assayed for binding both to the brain and peripheral cannabinoid receptors (CB1 and CB2). Seven of the new compounds displayed very high in vitro CB2 binding affinities, especially 1a, 1b, 1c, 1e, 1g, 1h and 1j which showed Ki values of 0.34, 0.225, 0.27, 0.23, 0.385, 0.037 and 0.9 nM, respectively. Compounds 1a, 1b, 1c and 1h showed the highest selectivity for CB2 receptor with Ki(CB1) to Ki(CB2) ratios of 6029, 5635, 5814 and 9810, respectively. Noticeably, 1h exhibited the highest affinity and selectivity for CB2 receptors

    Tryciclic pyrazoles. Part 6. Benzofuro[3,2-c]pyrazole: a versatile architecture for CB2 selective ligands

    No full text
    A new series of 1H-benzofuro[3,2-c]pyrazole-3-carboxamides was synthesized. The novel compounds (15e24) were evaluated for their affinity to CB2 and CB1 cannabinoid receptors. The synthesis of the title compounds takes advantage of the acid-catalysed thermal cyclization of bicyclic hydrazone ethyl 2-(2- (2,4-dichlorophenyl)hydrazono)-2-(6-methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)acetate to tricyclic ethyl 1-(2,4-dichlorophenyl)-6-methyl-1H-benzofuro[3,2-c]pyrazol-3-carboxylate. All the obtained derivatives showed high affinity to CB2 receptors. Moreover, significant selectivity for CB2 over CB1 receptors was highlighted for lead derivatives amongst the novel series. The best binding profiles were determined for homologues bearing monocyclic and bicyclic monoterpenic substituents at the carbamoyl group at 3 position of the pyrazole ring (KiCB2 < 4 nM). In particular, the isopinocampheyl-substituted derivative 22 exhibited the highest selectivity for CB2 receptors with Ki values of 3.7 and 2398 nM for CB2 and CB1 receptors, respectively. Preliminary functional assays evidenced CB2 agonism behaviour for all the assayed novel derivative

    Synthesis, modelling, and mu-opioid receptor affinity of N-3(9)-arylpropenyl-N-9(3)-propionyl-3,9-diazabicyclo[3.3.1]nonanes

    No full text
    A series of N-3-arylpropenyl-N-9-propionyl-3,9-diazabicyclo[3.3.1]nonanes (1a-g) and of reverted N-3-propionyl-N-9-arylpropenyl isomers (2a-g), as homologues of the previously reported analgesic 3,8-diazabicyclo[3.2.1]octanes (I-II), were synthesized and evaluated for the binding affinity towards opioid receptor subtypes mu, delta and kappa. Compounds 1a-g and 2a-g exhibited a strong selective mu -affinity with K-i values in the nanomolar range, which favourably compared with those of I and II. In addition, contrary to the trend observed for DBO-I, II, the mu -affinity of series 2 is markedly higher than that of the isomeric series 1. This aspect was discussed on the basis of the conformational studies performed on DBN which allowed hypotheses on the mode of interaction of these compounds with the mu receptor. (C) 2000 Elsevier Science S.A. All rights reserved

    Tricyclic pyrazoles. 4. Synthesis and biological evaluation of analogues of the robust and selective CB2 cannabinoid ligand 1-(2',4'-dichlorophenyl)-6-methyl-N-piperidin-1-yl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide

    No full text
    New analogues (2a-p) of the previously reported CB(2) ligands 6-methyl- and 6-chloro-1-(2',4'-dichlorophenyl)-N-piperidin-1-yl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamides (1a,b) have been synthesized and evaluated for cannabinoid receptor affinity. One example, 1-(2',4'-dichlorophenyl)-6-methyl-N-cyclohexyilamine-1,4-dihydroindeno[1,2-c] pyrazole-3-carboxamide (2a) was shown to have single digit nanomolar affinity for cannabinoid CB(2) receptors. Furthermore, compounds 2a and 2b, as well as lead structures 1a,b, were also shown to be agonist in an in vitro model based on human promyelocytic leukemia HL-60 cell

    A critical review of both the synthesis approach and the receptor profile of the 8-chloro-1-(2′,4′-dichlorophenyl)-N-piperidin-1-yl-1,4,5,6-Tetrahydrobenzo[6,7] cyclohepta[1,2-c ]pyrazole-3-carboxamide and analogue derivatives

    No full text
    8-Chloro-1-(2′,4′-dichlorophenyl)-N-piperidin-1-yl-1,4,5,6-Tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole-3-carboxamide 9a was discovered as potent and selective CB1 antagonist by part of our group few years ago. In particular it was reported to have an affinity towards the CB1 cannabinoid receptor (CB1R), expressed as Ki, of 0.00035 nM. Nevertheless significantly divergent data were reported for the same compound from other laboratories. To unequivocally define the receptor profile of 9a, we have critically reviewed both its synthesis approach and binding data. Here we report that, in contrast to our previously reported data, 9a showed a Ki value for CB1R in the order of nanomolar rather than of fentomolar range. The new determined receptor profile of 9a was also ascertained for analogue derivatives 9b-i, as well as for 12. Moreover, the structural features of the synthesized compounds necessary for CB1R were investigated. Amongst the novel series, effects on CB1R intrinsic activity was highlighted due to the substituents at the position 3 of the pyrazole ring of the 1,4,5,6-Tetrahydrobenzo[6,7]cyclohepta[1,2-c]pyrazole scaffold.Although the cannabinoid receptor profile of 9a was reviewed in this work, the relevance of this compound in CB1R antagonist based drug discovery is confirmed
    corecore