7,149 research outputs found

    Strawberry breeding for disease resistance in Dresden

    Get PDF
    Verticillium resistance is one of the most important breeding goals in strawberry resistance breeding at Dresden-Pillnitz. Resistance evaluation of cultivars, advanced selections and seedlings is realized under natural conditions at a provocation field and by artificial inoculation in the greenhouse. Introgression of Fragaria chiloensis L. (Miller) into Fragaria ×ananassa Duch. resulted in highly tolerant breeding selections. After back-crossing with cultivars of F. ×ananassa first genotypes were selected which can be evaluated in experimental cultivar trials at different locations in Germany

    Phase separation and competition of superconductivity and magnetism in the two-dimensional Hubbard model: From strong to weak coupling

    Full text link
    Cooperation and competition between the antiferromagnetic, d-wave superconducting and Mott-insulating states are explored for the two-dimensional Hubbard model including nearest and next-nearest-neighbor hoppings at zero temperature. Using the variational cluster approach with clusters of different shapes and sizes up to 10 sites, it is found that the doping-driven transition from a phase with microscopic coexistence of antiferromagnetism and superconductivity to a purely superconducting phase is discontinuous for strong interaction and accompanied by phase separation. At half-filling the system is in an antiferromagnetic Mott-insulating state with vanishing charge compressibility. Upon decreasing the interaction strength U below a certain critical value of roughly U=4 (in units of the nearest-neighbor hopping), however, the filling-dependent magnetic transition changes its character and becomes continuous. Phase separation or, more carefully, the tendency towards the formation of inhomogeneous states disappears. This critical value is in contrast to previous studies, where a much larger value was obtained. Moreover, we find that the system at half-filling undergoes the Mott transition from an insulator to a state with a finite charge compressibility at essentially the same value. The weakly correlated state at half-filling exhibits superconductivity microscopically admixed to the antiferromagnetic order. This scenario suggests a close relation between phase separation and the Mott-insulator physics.Comment: 7 pages, 8 figures, revised version to be published in Phys. Rev.

    Correlated band structure of electron-doped cuprate materials

    Get PDF
    We present a numerical study of the doping dependence of the spectral function of the n-type cuprates. Using a variational cluster-perturbation theory approach based upon the self-energy-functional theory, the spectral function of the electron-doped two-dimensional Hubbard model is calculated. The model includes the next-nearest neighbor electronic hopping amplitude tt' and a fixed on-site interaction U=8tU=8t at half filling and doping levels ranging from x=0.077x=0.077 to x=0.20x=0.20. Our results support the fact that a comprehensive description of the single-particle spectrum of electron-doped cuprates requires a proper treatment of strong electronic correlations. In contrast to previous weak-coupling approaches, we obtain a consistent description of the ARPES experiments without the need to introduce a doping-dependent on-site interaction UU.Comment: 7 pages 4 eps figure

    The strong Novikov conjecture for low degree cohomology

    Get PDF
    We show that for each discrete group G, the rational assembly map K_*(BG) \otimes Q \to K_*(C*_{max} G) \otimes \Q is injective on classes dual to the subring generated by cohomology classes of degree at most 2 (identifying rational K-homology and homology via the Chern character). Our result implies homotopy invariance of higher signatures associated to these cohomology classes. This consequence was first established by Connes-Gromov-Moscovici and Mathai. Our approach is based on the construction of flat twisting bundles out of sequences of almost flat bundles as first described in our previous work. In contrast to the argument of Mathai, our approach is independent of (and indeed gives a new proof of) the result of Hilsum-Skandalis on the homotopy invariance of the index of the signature operator twisted with bundles of small curvature.Comment: 11 page

    Accessing topological superconductivity via a combined STM and renormalization group analysis

    Full text link
    The search for topological superconductors has recently become a key issue in condensed matter physics, because of their possible relevance to provide a platform for Majorana bound states, non-Abelian statistics, and fault-tolerant quantum computing. We propose a new scheme which links as directly as possible the experimental search to a material-based microscopic theory for topological superconductivity. For this, the analysis of scanning tunneling microscopy, which typically uses a phenomenological ansatz for the superconductor gap functions, is elevated to a theory, where a multi-orbital functional renormalization group analysis allows for an unbiased microscopic determination of the material-dependent pairing potentials. The combined approach is highlighted for paradigmatic hexagonal systems, such as doped graphene and water-intercalated sodium cobaltates, where lattice symmetry and electronic correlations yield a propensity for a chiral singlet topological superconductor state. We demonstrate that our microscopic material-oriented procedure is necessary to uniquely resolve a topological superconductor state.Comment: phenomenological STM predictions and temperature dependence of conductance as well as references added (28 pages, 8 figures

    Breeding of resistant strawberry cultivars for organic fruit production – Diallel crossing strategies and resistance tests for Botrytis cinerea and Xanthomonas fragariae

    Get PDF
    Organic strawberry production suffers from high yield losses caused by numerous fungal and bacterial diseases. Two of the most important diseases are the grey mould disease caused by Botrytis cinerea Pers. (teleomorph Botryotinia fuckeliana), and the bacterial angular leaf spot disease caused by Xanthomonas fragariae (Kennedy & King). Beside cultivation methods and organic plant protection measures, the development of resistant cultivars seems to be the most promising strategy in order to improve the productivity in organic strawberry cultivation. Therefore, we established resistance tests to determine resistant and susceptible strawberry cultivars and breeding selections. In a first run, 40 different cultivars and selections were tested for their susceptibility towards B. cinerea by artificial inoculation of fruits and leaves and evaluation of the disease symptoms. Plants of 40 cultivars were tested for susceptibility to X. fragariae by artificial inoculation in the greenhouse. In a diallel crossing approach, 12 commonly cultivated strawberry cultivars have been crossed reciprocally and propagated in a field trial. Important characteristics of the progeny such as ripening time, yield, morphological traits and occurrence of diseases have been evaluated for a period of two consecutive years and lead to the determination of general (GCA) and specific (SCA) combining abilities. Together with the results of the resistance tests we identified a set of genotypes that show resistant characteristics towards B. cinerea and might be suitable for use in organic cultivation systems. Furthermore, they can be used for targeted breeding experiments in the future
    corecore