3,609 research outputs found

    NMDA Currents Modulate the Synaptic Input–Output Functions of Neurons in the Dorsal Nucleus of the Lateral Lemniscus in Mongolian Gerbils

    Get PDF
    Neurons in the dorsal nucleus of the lateral lemniscus (DNLL) receive excitatory and inhibitory inputs from the superior olivary complex (SOC) and convey GABAergic inhibition to the contralateral DNLL and the inferior colliculi. Unlike the fast glycinergic inhibition in the SOC, this GABAergic inhibition outlasts auditory stimulation by tens of milliseconds. Two mechanisms have been postulated to explain this persistent inhibition. One, an “integration-based” mechanism, suggests that postsynaptic excitatory integration in DNLL neurons generates prolonged activity, and the other favors the synaptic time course of the DNLL output itself. The feasibility of the integration-based mechanism was tested in vitro in DNLL neurons of Mongolian gerbils by quantifying the cellular excitability and synaptic input–output functions (IO-Fs). All neurons were sustained firing and generated a near monotonic IO-F on current injections. From synaptic stimulations, we estimate that activation of approximately five fibers, each on average liberating ∼18 vesicles, is sufficient to trigger a single postsynaptic action potential. A strong single pulse of afferent fiber stimulation triggered multiple postsynaptic action potentials. The steepness of the synaptic IO-F was dependent on the synaptic NMDA component. The synaptic NMDA receptor current defines the slope of the synaptic IO-F by enhancing the temporal and spatial EPSP summation. Blocking this NMDA-dependent amplification during postsynaptic integration of train stimulations resulted into a ∼20% reduction of the decay time course of the GABAergic inhibition. Thus, our data show that the NMDA-dependent amplification of the postsynaptic activity contributes to the GABAergic persistent inhibition generated by DNLL neurons

    Reduced [š⁸F]flortaucipir retention in white matter hyperintensities compared to normal-appearing white matter

    Get PDF
    PURPOSE: Recent research has suggested the use of white matter (WM) reference regions for longitudinal tau-PET imaging. However, tau tracers display affinity for the β-sheet structure formed by myelin, and thus WM lesions might influence tracer retention. Here, we explored whether the tau-sensitive tracer [18F]flortaucipir shows reduced retention in WM hyperintensities (WMH) and how this retention changes over time. METHODS: We included 707 participants from the Alzheimer's Disease Neuroimaging Initiative with available [18F]flortaucipir-PET and structural and FLAIR MRI scans. WM segments and WMH were automatically delineated in the structural MRI and FLAIR scans, respectively. [18F]flortaucipir standardized uptake value ratios (SUVR) of WMH and normal-appearing WM (NAWM) were calculated using the inferior cerebellar grey matter as reference region, and a 3-mm erosion was applied to the combined NAWM and WMH masks to avoid partial volume effects. Longitudinal [18F]flortaucipir SUVR changes in NAWM and WMH were estimated using linear mixed models. The percent variance of WM-referenced cortical [18F]flortaucipir SUVRs explained by longitudinal changes in the WM reference region was estimated with the R2 coefficient. RESULTS: Compared to NAWM, WMH areas displayed significantly reduced [18F]flortaucipir SUVR, independent of cognitive impairment or Aβ status (mean difference = 0.14 SUVR, p < 0.001). Older age was associated with lower [18F]flortaucipir SUVR in both NAWM (- 0.002 SUVR/year, p = 0.005) and WMH (- 0.004 SUVR/year, p < 0.001). Longitudinally, [18F]flortaucipir SUVR decreased in NAWM (- 0.008 SUVR/year, p = 0.03) and even more so in WMH (- 0.02 SUVR/year, p < 0.001). Between 17% and 66% of the variance of longitudinal changes in cortical WM-referenced [18F]flortaucipir SUVRs were explained by longitudinal changes in the reference region. CONCLUSIONS: [18F]flortaucipir retention in the WM decreases over time and is influenced by the presence of WMH, supporting the hypothesis that [18F]flortaucipir retention in the WM is partially myelin-dependent. These findings have implications for the use of WM reference regions for [18F]flortaucipir-PET imaging

    Smart Emission - Building a Spatial Data Infrastructure for an Environmental Citizen Sensor Network

    Get PDF
    Item does not contain fulltextSmart Emission is a citizen sensor network using low-cost sensors that enables citizens to gather data about environmental quality, like air quality, noise load, vibrations, light intensities and heat stress. This paper introduces the design and development of the data infrastructure for the Smart Emission initiative and discusses challenges for the future. The Spatial Data Infrastructure (SDI) is open and accessible on the Internet using open geospatial standards and (Web-) client applications. Smart Emission as a citizen sensor network offers several possibilities for heterogonous applications, from health determination to spatial planning purposes, environmental monitoring for sustainable traffic management, climate adaptation in cities and city planning.Geospatial Sensor Webs Conference 2016 (GSW 2016), 29 augustus 201
    • …
    corecore