111,827 research outputs found

    Adaptive sensing performance lower bounds for sparse signal detection and support estimation

    Get PDF
    This paper gives a precise characterization of the fundamental limits of adaptive sensing for diverse estimation and testing problems concerning sparse signals. We consider in particular the setting introduced in (IEEE Trans. Inform. Theory 57 (2011) 6222-6235) and show necessary conditions on the minimum signal magnitude for both detection and estimation: if xRn{\mathbf {x}}\in \mathbb{R}^n is a sparse vector with ss non-zero components then it can be reliably detected in noise provided the magnitude of the non-zero components exceeds 2/s\sqrt{2/s}. Furthermore, the signal support can be exactly identified provided the minimum magnitude exceeds 2logs\sqrt{2\log s}. Notably there is no dependence on nn, the extrinsic signal dimension. These results show that the adaptive sensing methodologies proposed previously in the literature are essentially optimal, and cannot be substantially improved. In addition, these results provide further insights on the limits of adaptive compressive sensing.Comment: Published in at http://dx.doi.org/10.3150/13-BEJ555 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Unified Treatment of Mixed Vector-Scalar Screened Coulomb Potentials for Fermions

    Full text link
    The problem of a fermion subject to a general mixing of vector and scalar screened Coulomb potentials in a two-dimensional world is analyzed and quantization conditions are found.Comment: 7 page

    Relativistic Effects of Mixed Vector-Scalar-Pseudoscalar Potentials for Fermions in 1+1 Dimensions

    Full text link
    The problem of fermions in the presence of a pseudoscalar plus a mixing of vector and scalar potentials which have equal or opposite signs is investigated. We explore all the possible signs of the potentials and discuss their bound-state solutions for fermions and antifermions. The cases of mixed vector and scalar P\"{o}schl-Teller-like and pseudoscalar kink-like potentials, already analyzed in previous works, are obtained as particular cases

    A new construction of Lagrangians in the complex Euclidean plane in terms of planar curves

    Full text link
    We introduce a new method to construct a large family of Lagrangian surfaces in complex Euclidean plane by means of two planar curves making use of their usual product as complex functions and integrating the Hermitian product of their position and tangent vectors. Among this family, we characterize minimal, constant mean curvature, Hamiltonian stationary, solitons for mean curvature flow and Willmore surfaces in terms of simple properties of the curvatures of the generating curves. As an application, we provide explicitly conformal parametrizations of known and new examples of these classes of Lagrangians in complex Euclidean plane.Comment: 15 pages, 5 figure

    Adaptive Compressed Sensing for Support Recovery of Structured Sparse Sets

    Get PDF
    This paper investigates the problem of recovering the support of structured signals via adaptive compressive sensing. We examine several classes of structured support sets, and characterize the fundamental limits of accurately recovering such sets through compressive measurements, while simultaneously providing adaptive support recovery protocols that perform near optimally for these classes. We show that by adaptively designing the sensing matrix we can attain significant performance gains over non-adaptive protocols. These gains arise from the fact that adaptive sensing can: (i) better mitigate the effects of noise, and (ii) better capitalize on the structure of the support sets.Comment: to appear in IEEE Transactions on Information Theor

    Algebraic solution of a graphene layer in a transverse electric and perpendicular magnetic fields

    Full text link
    We present an exact algebraic solution of a single graphene plane in transverse electric and perpendicular magnetic fields. The method presented gives both the eigen-values and the eigen-functions of the graphene plane. It is shown that the eigen-states of the problem can be casted in terms of coherent states, which appears in a natural way from the formalism.Comment: 11 pages, 5 figures, accepted for publication in Journal of Physics Condensed Matte

    Multiple Testing and Variable Selection along Least Angle Regression's path

    Full text link
    In this article, we investigate multiple testing and variable selection using Least Angle Regression (LARS) algorithm in high dimensions under the Gaussian noise assumption. LARS is known to produce a piecewise affine solutions path with change points referred to as knots of the LARS path. The cornerstone of the present work is the expression in closed form of the exact joint law of K-uplets of knots conditional on the variables selected by LARS, namely the so-called post-selection joint law of the LARS knots. Numerical experiments demonstrate the perfect fit of our finding. Our main contributions are three fold. First, we build testing procedures on variables entering the model along the LARS path in the general design case when the noise level can be unknown. This testing procedures are referred to as the Generalized t-Spacing tests (GtSt) and we prove that they have exact non-asymptotic level (i.e., Type I error is exactly controlled). In that way, we extend a work from (Taylor et al., 2014) where the Spacing test works for consecutive knots and known variance. Second, we introduce a new exact multiple false negatives test after model selection in the general design case when the noise level can be unknown. We prove that this testing procedure has exact non-asymptotic level for general design and unknown noise level. Last, we give an exact control of the false discovery rate (FDR) under orthogonal design assumption. Monte-Carlo simulations and a real data experiment are provided to illustrate our results in this case. Of independent interest, we introduce an equivalent formulation of LARS algorithm based on a recursive function.Comment: 62 pages; new: FDR control and power comparison between Knockoff, FCD, Slope and our proposed method; new: the introduction has been revised and now present a synthetic presentation of the main results. We believe that this introduction brings new insists compared to previous version

    New solutions of the D-dimensional Klein-Gordon equation via mapping onto the nonrelativistic one-dimensional Morse potential

    Full text link
    New exact analytical bound-state solutions of the D-dimensional Klein-Gordon equation for a large set of couplings and potential functions are obtained via mapping onto the nonrelativistic bound-state solutions of the one-dimensional generalized Morse potential. The eigenfunctions are expressed in terms of generalized Laguerre polynomials, and the eigenenergies are expressed in terms of solutions of irrational equations at the worst. Several analytical results found in the literature, including the so-called Klein-Gordon oscillator, are obtained as particular cases of this unified approac
    corecore